GOVERNANCE
An Arizona corporation established in 1983, University of Advancing Technology (UAT) is a registered tradename of University of Advancing Computer Technology, Inc.

BOARD OF DIRECTORS
Mr. Jay Lohman, Chairman of the Board
Dr. Dominic P. Pistillo, Founder, Director
Mr. Jason Roberts, Director
Dr. Nancy Houston, Director
Mr. Jason Funk, Director
Mr. Jason Konesco, Director

ADMINISTRATION
PRESIDENT AND CHIEF EXECUTIVE OFFICER
Jason D. Pistillo
PROVOST AND SECRETARY
Dr. David B. Bolman
VICE PRESIDENT OF TALENT AND OPERATIONS
Karla Aragon-Joyce
CHIEF OF STAFF
Valerie Cimarossa
SENIOR CONTROLLER
Erika Garney
DIRECTOR OF MARKETING AND COMMUNICATIONS
Alan Hromas
DEAN OF STUDENT AFFAIRS
Dana Frasca
MANAGER OF EDUCATION OPERATIONS
Dr. Marianne Langner
MANAGER OF FACULTY
Allyson Videtic
DIRECTOR OF ADMISSIONS
Megan Benson
DIRECTOR OF BUSINESS OPERATIONS
Louis Mione
REGISTRAR
Tyler Walling
BURSAR
Renee Grauberger

CONTACT INFORMATION
2625 W. Baseline Rd.
Tempe, AZ 85283
Phone: 877.UAT.GEEK Fax: 602.383.8222
www.uat.edu

ACCREDITATIONS, AUTHORIZATIONS AND APPROVALS
UAT is accredited by The Higher Learning Commission. Further information about The Higher Learning Commission may be obtained via www.ncahlc.org or by phone: (800) 621-7440 / (312) 263-0456.

In addition, UAT holds the following accreditations, authorizations, approvals and memberships:
> Council for Higher Education Accreditation (CHEA), Accreditation Member
> Licensed by the Arizona State Board for Private Postsecondary Education
> Certified by the US Department of Education
> Designated Center of Academic Excellence by the National Centers of Information Assurance Education (CAE/IAE) sponsored by the U.S. National Security Agency and the Homeland Security Department
> Network Security Curriculum has been certified through the NSA/DHS National Information Assurance Education Training Program in Information Assurance (IA)/Cyber Defense (CD)
> Programs approved for the training of veterans
> Approved by the Student and Exchange Visitor Information Systems (SEVIS) for training of foreign students
> Alpha Beta Kappa Honor Society
> Association of Computing Machinery (ACM), Member
> American Association of Collegiate Registrars and Admissions Officers (AACRAO), Member
> Western Association of Student Employment Administrators, Member
> Better Business Bureau, Member
> NAFSA: Association of International Educators, Member
> Cumulus, the International Association of Universities and Colleges of Art, Design and Media, Member

To view an updated list, go to uat.edu/accreditation. The major certificates of accreditation or membership are on display in the halls of the school. Those which are not on display may be viewed by directing a written request to the appropriate school official.
WELCOME STUDENTS!

We at University of Advancing Technology (UAT) have worked hard to develop our culture and core curriculum to inspire students and professors alike. This helps us to see beyond the tech of the moment to the greater trends and future directions that create true innovation and industry leadership.

UAT is among the first all computer universities in the country and one of the select few 100 percent STEM-based universities in the nation. UAT has earned a reputation for excellence in advancing technology education. Our students are known as forward-thinking innovators and capable problem solvers.

UAT is a nexus for technophiles, tech geeks and mavens of the digital world. That’s why you’re not just stepping on campus, you’re entering a technophile’s playground where you can develop your passion. Hands-on experience with the latest software, constantly upgraded hardware and the most brilliant minds passionately deployed to lead, ensure students have what they need to innovate the future of technology. As you walk around campus, you’ll see groups of students working together on various technology innovations, tracking down the next breakthrough. These interactions will not only challenge you to learn from each other, but will also build friendships and partnerships that will last a lifetime. It is with this frame of mind that I welcome you to University of Advancing Technology, a unique place where the culture of technology is understood and made relevant to the world around us. It is a world where you will feel you belong and are a part of something exceptional.

UAT’s culture reinforces the heart of why UAT exists: “To educate students in advancing technology who innovate for our future.” It is our mission to immerse students in an environment where they can learn, experience and innovate. And connect. Students, staff and faculty learn, experience and innovate together in a team environment. Students feel comfortable with the faculty, connected to their studies and share the same passions for new thinking as their peers.

Education at UAT is intentionally molded to teach students how to think as technologists. Solutions to future technology challenges will be inventive and on the cutting edge of knowledge creation; therefore, our approach to learning will teach students how to think in both linear and lateral ways, for a lifetime. UAT’s distinctive model, Synchronic Learning, optimizes learning by combining education global best practices with its own research.

This environment not only supports curricular endeavors but also develops the whole person through social, emotional and physical outlets, thus preparing you for a life of contributions to society. The journey ahead of you will be unlike any you have encountered before and will be unlike any you will experience later. Our intent is to make this time in your life thought-provoking, challenging and engaging—ultimately, it will be a time of successful transformation and growth.

Students with a passion for technology will find the UAT experience to be the defining choice in their paths to success in life.

Welcome to the UAT community!

Jason Pistillo
President
<table>
<thead>
<tr>
<th>Academic Policies</th>
<th>Course Codes and Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intranet</td>
<td>Art</td>
</tr>
<tr>
<td>Placement Testing</td>
<td>Astronomy</td>
</tr>
<tr>
<td>Registration</td>
<td>Audio</td>
</tr>
<tr>
<td>Drop/Add</td>
<td>Biology</td>
</tr>
<tr>
<td>Individual Course Withdrawal</td>
<td>Business</td>
</tr>
<tr>
<td>Repeated Courses</td>
<td>Communications</td>
</tr>
<tr>
<td>Incomplete</td>
<td>Computer Forensics</td>
</tr>
<tr>
<td>Changing Degree Programs</td>
<td>Computer Information Systems</td>
</tr>
<tr>
<td>Multiple Degree Policy</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Student Classification (Academic Level)</td>
<td>Design Build Make</td>
</tr>
<tr>
<td>Course Load</td>
<td>Digital Video and Animation</td>
</tr>
<tr>
<td>Internships</td>
<td>English</td>
</tr>
<tr>
<td>Attendance</td>
<td>Entrepreneurship</td>
</tr>
<tr>
<td>Academic Breaks</td>
<td>Fitness</td>
</tr>
<tr>
<td>Course and Instructor Evaluations</td>
<td>Game Art and Animation</td>
</tr>
<tr>
<td>Grading</td>
<td>Game Studies</td>
</tr>
<tr>
<td>Grade Point Average (GPA)</td>
<td>History</td>
</tr>
<tr>
<td>Grade Discrepancies</td>
<td>Human Computer Interaction</td>
</tr>
<tr>
<td>Honors Requirements</td>
<td>Internships</td>
</tr>
<tr>
<td>Leave of Absence</td>
<td>Japanese Studies</td>
</tr>
<tr>
<td>Withdrawal from the University</td>
<td>Law</td>
</tr>
<tr>
<td>Involuntary Withdrawal</td>
<td>Management</td>
</tr>
<tr>
<td>Satisfactory Academic Progress</td>
<td>Marketing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General Policies</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Americans with Disabilities Act</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Campus Safety</td>
<td>Multimedia</td>
</tr>
<tr>
<td>Code of Conduct</td>
<td>Network Security</td>
</tr>
<tr>
<td>Drugs and Alcohol</td>
<td>Network Technology</td>
</tr>
<tr>
<td>Dress Code</td>
<td>Philosophy</td>
</tr>
<tr>
<td>Family Educational Rights and Privacy Act (FERPA)</td>
<td>Physics</td>
</tr>
<tr>
<td>Records</td>
<td>Robotics</td>
</tr>
<tr>
<td>Flammable Material</td>
<td>Science</td>
</tr>
<tr>
<td>Computer Disclaimer</td>
<td>Social Science</td>
</tr>
<tr>
<td>Wireless Networking Devices</td>
<td>Student Innovation Project</td>
</tr>
<tr>
<td>Library Equipment Lending</td>
<td>Technology</td>
</tr>
<tr>
<td>Mass Communication</td>
<td>Technology Special Topics</td>
</tr>
<tr>
<td>Missing Person</td>
<td>Theater</td>
</tr>
<tr>
<td>Parking</td>
<td></td>
</tr>
<tr>
<td>Publicity and Intellectual Property</td>
<td></td>
</tr>
<tr>
<td>Copyright</td>
<td></td>
</tr>
<tr>
<td>Sexual Harassment</td>
<td></td>
</tr>
<tr>
<td>Student Grievance</td>
<td></td>
</tr>
<tr>
<td>Student Employment</td>
<td></td>
</tr>
</tbody>
</table>
MISSION
To educate students in advancing technology who innovate for our future.

VISION
To advance global society by developing premier thinkers for a lifetime of innovation.

INSTITUTIONAL VALUES

Integrity—We promote positive social responsibility and good global citizenship, and always act with integrity, honesty and ethics above reproach.

Quality Through Continuous Improvement—UAT is a complex system of interrelated parts that shall be continuously improved. We plan, use feedback and seek to understand relationships so that UAT systems will be stopped, simplified, improved or innovated.

Lifelong Learning—UAT is a learning organization. UAT provides the highest level of student learning, seeks learning opportunities throughout the organization and expects individual growth.

Teamwork—We believe in and foster teamwork. Working in collaborative teams, we support each other, create alignment and build shared understanding that produces superior results.

Family—UAT values the commitment, support and lifelong growth that come from a learning community built around family principles. Its policies and practices promote healthy interactions within this family context. UAT embraces the benefits of family working at and attending the University.

DIVERSITY
At UAT, we believe modern technology is the amalgam of innovations from worldwide contributors. This stimulates the University to invest significant energy in teaching an understanding of others and an appreciation of the benefits and leverage that exist within our differences. These differences include those of background, perspective, thinking style, learning style and personality. Further, the University believes that diversity in technology education requires educating and empowering students to serve the common good with success and distinction in an increasingly global environment while understanding the profound impacts of the technologies they may develop. To encourage this appreciation, UAT provides a diverse set of learning experiences and campus activities including curricular and extracurricular interactions that foster an understanding and appreciation of the diversity of individuals and teams within a broad context. All endeavors are focused on this global context, creating competencies in inquiry, open dialogue, communication and intelligent choice-making.
ABOUT UAT

UAT is the ideal environment for makers, technophiles and mavens of the digital world to evolve into top executives, master programmers, cyber warriors, digital entertainers, forensic sleuths, robotic engineers, interactive filmmakers, and game innovators.

If you are looking for an advancing technology focused education powered by the ideal environment for learning innovators as well as the tech respect required for leadership, UAT residential campus and online curriculum will get you there. Our unique technology-infused campus is designed to enhance collaborative, hands-on learning that connects you with your peers, the industry and your professors. Students have unlimited access to all labs from day one. UAT on-campus labs are stocked with the most current software, constantly upgraded world-class hardware and the guidance of brilliant, passionate minds dedicated to supporting students with their own innovation.

OFFERINGS

University of Advancing Technology delivers collegiate education and research in a multitude of technology areas. UAT offers two-year, four-year and graduate degree programs in a year-round environment in arts and sciences. These programs result in associate’s, bachelor’s or master’s degrees. UAT offers the following degree programs:

Bachelor or Associate of Science degrees are offered in the following disciplines:
> Advancing Computer Science
> Artificial Life Programming
> Business Technology
> Digital Maker and Fabrication
> Enterprise Software Development
> Game Programming
> Human-Computer Interaction
> Network Engineering
> Network Security
> Robotics and Embedded Systems
> Technology Forensics
> Technology Studies
> Web Design

Bachelor or Associate of Arts degrees are offered in the following disciplines:
> Digital Media
> Digital Video
> Game Art and Animation
> Game Design
> Serious Game and Simulation

Master of Science degrees are offered in the following disciplines:
> Advancing Computer Science
> Game Production and Management
> Information Assurance
> Technology Leadership

A program is defined as a licensed and accredited degree program. Programs are designed to provide a balance of computer technologies, conceptual knowledge and general education. The University utilizes feedback from industry, employers, graduates, students and faculty when designing curriculum to ensure that the programs reflect industry advancements, needs and requirements in a competitive world economy.
HISTORY

1983 College founded.
1992 First in the nation to offer online training for AutoCAD.
First Bachelor’s degree program founded.
Virtual Reality program offered.
Center for Learning Research center founded.
1994 Hyperlearning educational model created.
1997 Name changed from CAD Institute to University of Advancing Computer Technology.
Software Engineering program launched.
1998 Tempe campus opened.
1999 Accredited by ACICS to offer graduate degrees.
2000 Network Security program launched.
2000 Began seeking regional accreditation.
2002 University evolves to become University of Advancing Technology.
University transitions to national focus on traditional age students.
2003 First online Bachelor’s degree in Game Design offered by UAT.
2005 Leonardo da Vinci Society for the Study of Thinking created with Dr. Edward de Bono as chair.
2007 Founder’s Hall opened.
Designated as a Center of Academic Excellence.
Student innovation evolves.
2010 Student Innovation Projects become the standard.
Cyber Security classroom opened.
2012 Synchronic Learning model created.
2013 UAT celebrates 30th anniversary.
Digital Maker and Fabrication program launched.
2014 Business Technology degree launched.

When University of Advancing Technology was founded in 1983, it was conceived as a small school focused on training engineers and architects in a completely new field of computer-aided engineering. In the ‘80s, UAT spent its time forming as an institution. Its original students came to the CAD Institute seeking professional development training and certifications.

From its beginning, the institution was involved with advances in computer graphics and unique approaches to technology education. By 1990, students could specialize in Virtual Reality. In 1992, CAD Institute founded an initial research center, the Computer Reality Center. The center performed research for the computer graphics industry primarily, with specific emphasis on the field of virtual reality. The center’s mission changed in 1995 from applied research to leveraging technology for learning. Over time, the center adopted the Hyperlearning learning model and developed the methods associated with Synchronic Learning.

To strengthen its program offerings, the University sought to attain vital accreditations, which would raise it from a certificate-granting body to an institution of higher learning—a college—offering nationally accredited associate’s and bachelor’s degrees in 1992. At this point, the University’s founders recognized that specialized technologies programs filled a gap in higher education for students seeking technology-intensive programs, but who did not want to attend a tech school. In order to attract this type of student, CAD Institute changed its name to University of Advancing Computer Technology in 1997.

Inherent in this name change was the desire to reflect the broad technology focus of students within a collegiate setting. Associated with the growth in programs and the student body, the institution designed and built a new campus. Its architecture was a reflection of the school’s learning methods and showcased the technology foundational to its programs.

Construction of the campus was completed in the spring of 1998, operating in a technology-oriented 50,000-square-foot campus in Tempe, Arizona, centrally located to metropolitan Phoenix. The building features classrooms, computer labs, innovating studios, and computing commons outfitted with approximately 300 computer workstations and an extensive technology infrastructure.

Student and faculty learning and resource areas are designed to foster working in collegial groups, providing flexibility and much needed access to technology. Food services, library and student common social areas enhance student life and collaborative learning.

Throughout 2000 to 2010, UAT worked to remove barriers to create a college that absolutely demonstrated what being a private college was really all about. A traditional acceptance model was formed and there was an increase in rigor, general studies and academic content in the majors.

Recognizing that technology is not exclusive to computers, the institution made the next incremental change in its name in 2002, when it became University of Advancing Technology (UAT). The University removed the word computer from its name as a reflection of the notion that computer technology had evolved beyond the personal computer to encompass all devices that communicate, manage information and provide connections through all media, including the Internet.

In the Fall of 2007, housing facilities for 260 students were opened on campus. That same year, UAT became a candidate with the Higher Learning Commission and an affiliate of the North Central Association. In recognition of the quality of its Network Security program, the University was also designated a Center of Academic Excellence by the National Centers of Information Assurance Education (CAE/IAE) sponsored by the U.S. National Security Agency and the Department of Homeland Security.

Student Innovation Projects (SIPs), originally termed Senior Innovation Project, began taking shape in 2008. Students begin evolving an idea in their freshman year that aims to develop tomorrow’s innovative technologies.

In 2009, UAT became accredited by The Higher Learning Commission and a member of the North Central Association (www.ncahlc.com) to award diplomas, associate’s degrees, bachelor’s degrees and master’s degrees. The 2009 year also included the addition of four new degrees. 2013 marks UAT’s 30th Anniversary as an institution of higher education.
CAMPUS LIFE

At UAT, there is no gap between a traditional, well-rounded education and modern technology. Because of this, campus culture at UAT is unique among contemporary colleges. UAT students are expected to develop and share their passions and intellectual pursuits in all aspects of campus life. In this environment, academics thrive and students are supported in all of their endeavors by faculty and staff who are as excited about discovery as they are about teaching.

UAT strongly supports the continuation of a rich student life experience through many channels, including student clubs, community service opportunities, social events, residence life and student trips, such as:

> 48-hour challenges in game, film, robotics and programming.
> Student Clubs and Organizations: a truly geek-friendly environment, UAT supports a multitude of clubs and campus activities, such as Anime Club and Robotics Club.
> Campus Activities: Students are regularly encouraged to take part in an array of on-campus activities ranging from Live Action Games and MMORPGs to photography trips and bicycle excursions.
> Residence Life Activities: Students live in University-sponsored housing, having an array of activities to help facilitate learning both inside and outside of the classroom.
> Student Trips: major industry trade shows and academic conferences regularly attended by students include DEF CON, SIGGRAPH, Game Developers Conference, COMICON and Black Hat.

RESIDENCE LIFE PHILOSOPHY

All first year students are required to live in the Residence Life Community. The Residence Life staff at UAT follows the philosophy of supporting our residents through the transition from dependence to independence. UAT Residence Life frames this transition into three categories: Live. Learn. Grow.

> **Live**—Facilitating the creation of a fun, friendly, vibrant, diverse community and a memorable student experience.
> **Learn**—Focus on supporting students’ academic success.
> **Grow**—Encouraging residents’ personal growth, empowerment and transition to independence.

RESIDENCE LIFE COMMUNITY

The Residence Life staff manages the Founder’s Hall community. A vital part of the staff are the Resident Assistants (RAs). The RAs are available to assist students with their transition to university life, and also during their educational journey at UAT. RAs are current students who act as student advocates and mentors for the students living within the residence life community. They are an informative source for campus activities, academic matters, campus and community resources and administrative procedures.

The Residence Life experience includes on-campus housing in Founder’s Hall. The Residence Life Community has the convenience of individual leases, access to washers and dryers, common spaces, basic furnishings (beds, dressers, desks), basic utilities, and support of the community from the RAs and Residence Life activities.

Prior to entering into any type of off-site rental or lease agreement, a student should secure written authorization for independent housing. Any questions should be directed to the Director of Founder’s Hall (ResLife@uat.edu). It is the student’s responsibility to follow-up and maintain communication with the Office of Residence Life to ensure that the Application for Independent Housing was received and that determination of final decision was made.

PHILOSOPHY

While UAT supports students in their transition into three categories: Live. Learn. Grow. There are limited exceptions to the policy for first year students to reside on-campus, e.g., if the student is legally married. To live outside of the Residence Life Community, a student must submit an Application for Independent Housing and furnish appropriate documentation along with any other written information supportive of the request ninety (90) days prior to the semester the student wishes to commence residing off campus. The Director of Residence Life shall approve or deny all applications in writing.

Please send Application for Independent Housing to the following address:

Department of Residence Life
2627 W. Baseline Rd.
Tempe, AZ 85283-1056

In addition, University Student Activities Council (SAC)—formed to give the student body at UAT a collective voice and to set traditions within the University—performs important roles in encouraging self-directed Student Life organizations, coordinating student community service activities and providing a venue for feedback between students, faculty and staff. Students are encouraged to participate in SAC’s weekly open meetings.
ACADEMICS

Academics at UAT focus on creating an immersive technology education experience that integrates the classroom experience with asynchronous and online learning elements.

As a small private college that focuses solely on advancing and emerging technology disciplines, UAT programs tend to be unique among academia or emerge years ahead of other schools. The emerging technologies that resonate with UAT’s identity are identified using a research process that incorporates global perspectives on technologies that will contribute to the development of human society. The study and furtherance of those technologies are developed into undergraduate and graduate programs through a balanced process incorporating insights from many sources. The resulting curriculum is delivered using methodologies specifically chosen for their effectiveness in educating the current college student, i.e., the digital native.

Delivery of the programs is conducted by highly credentialed, experienced, engaged, passionate faculty members. Additionally, delivery of the programs is thoroughly supported by a technology implementation component that continuously ensures UAT students have access to some of the most advanced technologies available with respect to their disciplines.

The ultimate goal of the academic programs is to support the fulfillment of UAT’s mission to educate students in advancing technology who innovate for our future. In pursuit of fulfilling our mission, each of the above components can be expounded upon as follows:

All programs at UAT are identified through a process that examines emerging technologies in their infancy and gauges their potential to contribute and change the way we live and interact. Technologies that align with UAT’s identity and have the potential to contribute long-term to society are chosen for research and possible implementation within the University’s academic environment. Those technologies that are determined to be viable for development into meaningful, rich academic degree programs are then readied for implementation. During this development phase, members of UAT’s academic administration staff seek to recruit instructors and subject matter experts who demonstrate appropriate expertise in the emerging technology area to develop such programs at UAT. Programs are then developed by these faculty members and curriculum specialists using a balanced approach to leveraging input from industry, alumni, students, employers and the broader community.
FACULTY

UAT’s faculty body is a diverse, collaborative and deeply connected community of thinkers, teachers, technological gurus, industry experts and mentors. They garner their skills, knowledge and expertise from a range of experiences within academia and industry. UAT faculty members are governed by their passions for technology, their students and their own academic and professional growth. Because technology is constantly evolving, UAT instructors continually work to identify and forecast technological developments.

They routinely engage and assess developments within their respective disciplines, testing new software, evaluating new strategies and analyzing and integrating new industry standards and protocols. However, beyond simply engaging the skills and tools of their disciplines, our faculty members maintain awareness of the theoretical and abstract approaches that inform these skills and tools.

UAT instructors are educators above all else. Their degrees and formal credentials reflect their passion for learning. As lifelong learners, they are vigilant of recent developments in teaching pedagogy, methodology and cognitive development. They are continually reaching to achieve more effective results through careful attention to assignments, outcomes, in-class activities and student needs. UAT’s unique approach to teaching and learning—as articulated in the Synchronic Learning methodology—weaves the study of best practices in teaching and learning into every facet of the institution, from the building’s architecture to the programs’ course offerings. UAT faculty members are also acutely aware of technology as a powerful learning tool, adopting pedagogical approaches that capitalize on students’ status as digital natives. UAT faculty are the most profound embodiment of Synchronic Learning—they are adept at utilizing multiple student-centered approaches to teaching in order to instill in their students an awareness of theory, applied skills and ultimately knowledge synthesis.

We believe the best educators are more than teachers—they are mentors. Mentors are concerned with more than the technical expertise of their students; therefore, they give generously of their time and knowledge, and condition their educational approach to addressing the complete person. As mentors, they are personally invested in the successes and failures of every student. In doing so, they hold students to high academic and personal standards because they understand the expectations that await college graduates beyond the limited purview of academia. The success of faculty is gauged by the success of their students in completing innovative technology works.

As educators and mentors, it is also the responsibility of faculty members to function as ambassadors to the current physical, digital and increasingly global communities and contexts that impact their disciplines. This means that faculty members move in circles outside of the insular borders of single industries and disciplines. Faculty members are critically aware of how their efforts within their disciplines impact the industries and communities associated with their work. They attend and speak at large conferences, they maintain professional memberships and certifications, and they read and submit articles to trade publications, magazines and academic journals. This community consciousness ensures that UAT students graduate with a critical awareness that grants them efficacy as digital citizens.

UAT faculty members also share a commitment to the University, organizing and shaping it through service. They are respectful colleagues, willing to collaborate with others and use different opinions to form complex solutions. This sense of camaraderie among faculty members contributes to easier collaboration and a generative environment. By serving on committees and participating in program governance, faculty members give voice to their discipline and help determine its future. Additionally, faculty members leverage their industry experience in order to meaningfully develop UAT’s academic curriculum. They are active in University and student culture, participating in events such as CONNECT (the new student orientation), and UAT Experience (open house event). Such dedicated service creates a rich and passionate environment in which to learn and to work.
SYNCHRONIC LEARNING

Synchronic Learning is a hands-on, real-world experience allowing individual students and multidisciplinary teams to work side-by-side with professors and industry leaders to create innovative, complex projects. There are four cornerstones of Synchronic Learning – The UAT Experience, Delivery Methods, Tiered Curriculum and Dynamic Learning. To view this interactively online, visit uat.edu/synchroniclearning.

UAT has spent years developing, implementing, evaluating and improving its signature pedagogy for technology students. Delivery methods focus on creating active lifelong learners, thinkers and innovators using metacognitive strategies appropriate to the technology environment and tailoring experiences to today’s learners. Through the course of the 1990s, the University’s Center for Learning Research studied and published best learning practices. Renamed the Center for Learning Excellence (CLE) in 2002, the center was given a charter to develop learning practices and ensure faculty became master practitioners. From this research the University reviews, updates and enhances our delivery model on a regular basis. This approach ensures that our methods keep pace with the unique and changing nature of the disciplines we deliver. We consider this ongoing improvement necessary to maintain the relevance of our methods and curricula.

THE UAT EXPERIENCE

The quintessential environment for learning is one in which students feel comfortable expressing their individual thoughts, while being challenged by other technophiles, professors and industry leaders. On campus, online and at leading industry events, it’s this UAT experience, coupled with a full immersion in technology that promotes the maximum development of each student’s potential.

DELIVERY METHODS

A combination of synchronous and asynchronous content delivery methods integrates technology into educational experiences and encourages the development of lifelong learning habits. UAT understands that all students learn differently, but more importantly, that successful individuals will need the ability to adapt and learn in different ways. Our five delivery methods—or facets of Synchronic Learning—are designed to address all learning styles and prepare students to engage in a lifetime of learning after leaving the University.

The nature of technology is change. Therefore UAT continuously looks for additional best practices in modern learning that could be applicable and provide improvements to this system. With the practicing requirements of successful technologists held firmly in mind, the University developed our signature approach to technology education using the following contributing and balancing pieces. The five styles that the University delivers (used in combination in all online and on-campus classes) are the following:

> Modified Lecture
> Discovery Learning
> Student Teachback
> Group Recollection
> Tutorial Learning

Modified Lecture is an instructor-facilitated interactive presentation of information through a mix of dialogue and discussion in both on-campus classes and through threaded discussions on the website. The goal is to put information into the hands of the students while engaging them in the learning process as active participants.

Tutorial Learning is a presentation of new material through a step-by-step process with either specific guidance and directions from the instructor or self-directed learning following instructional guidelines provided in an online format. The goal of tutorial instruction is to reinforce the cumulative success of all participants in a hands-on, skill-building experience.

Group Recollection deepens information understanding and retention through engagement with groups of peers. During Group Recollection, students are informally organized into teams to recall and apply their understanding of previously covered materials. Students collaborate and work in teams to create technologies, solve problems and complete projects. Group Recollection teaches valuable work skills and ethics that parallel the actual workplace.

Student Teachback creates an opportunity for students to develop and present new material to their peers. As a learning method, Teachback creates investment by making ownership of knowledge a student responsibility instead of solely the realm of the faculty. The goal of this method is to allow for creativity, assimilation and retention while developing both self-confidence and professional communication skills.

Discovery Learning engages students by encouraging them to be active knowledge discoverers throughout their education. Discovery Learning works at three levels within the UAT environment and that drives students towards the completion of complex work within their disciplines. Students work individually or in teams and compare methods and processes across teams. In open-discovery, both outcome and process are proposed by the students, and the faculty member serves as a supporting resource, progress checker and mentor.

By delivering curriculum through a variety of methods, UAT ensures that students will gain important skills through group interaction, as well as learning independence and time management.

TIERED CURRICULUM

The next element within our signature pedagogy is the University’s tiered curricular approach to technology program design. Based on feedback from faculty, industry, alumni and students, this multi-level approach was developed to ensure that our students not only continue to receive the latest in applied technology but surround and balance those skills with grounding theory and a synthesis product (i.e., complete, complex works) in all discipline areas. The three-tiered approach moves students through coursework designed to present the following:

> Foundational
> Skills Development
> Synthesis

Foundational courses are designed to provide the students with background and fundamental skills so that they may have an understanding of the intellectual and systemic underpinnings of their technology discipline. These courses may be considered the pure information delivery courses they will experience at UAT and provide the basis upon which dynamic application and discovery can occur.

Skills Development courses are designed to expose students to the latest technology tools associated with their programs. This can range from software packages and applications to networking hardware, communication and writing within the discipline. Students produce complete works at this level in their disciplines through guided or goal-based discovery learning techniques.
Synthesis courses are designed for students to work independently or in teams to apply their knowledge to broader projects and produce complete, complex works in their discipline. Students are encouraged to propose their own projects and define the methods or process by which the project will be completed. Generally, these courses are approached from a tool agnostic standpoint where the technology chosen to complete the project is a student choice and is based upon the appropriateness of the tool to the outcome rather than prescribed by the class itself. These courses are focused towards larger, real-world projects.

DYNAMIC LEARNING

UAT has created an educational environment that’s tailored to individual learning styles, with a curriculum and project-creation experience that is continually evolving and changing—with guidance from the student, professors, family members, mentors and peers. This dynamic on-campus and online learning provides the ideal setting for students to realize their highest learning potential. Dynamic Learning continuously engages students in a technology-rich educational environment.

EXTERNAL LEARNING

External learning activities center on students and teams leaving campus to work with industry professionals to develop learning skills that are aligned with real-world situations including symposiums, competitions and industry trade shows.

FLEXIBLE SCHEDULING

UAT builds its course offerings each semester with a variety of scheduling models including resident, blended and fully online courses. With out-of-state residents constituting approximately 80% of our population, students sometimes travel over the summer months visiting family or completing required internships in their programs, so this facet of our signature pedagogy is not only beneficial to modern learners but is required to meet their needs.

YEAR-ROUND LEARNING

While flexibility on when and where learning occurs is key to the modern learner, year-round immersion in a UAT technology discipline is equally important for two reasons. First, one expectation of our graduates is that they will have worked in collaborative teams to produce complete, complex works in their discipline as undergraduates. Taking the summer (or any semester) off can make the completion of team projects difficult. Second, UAT believes that students should experience the lifelong learning practices and thinking habits that will be needed after graduation, and stopping learning for a semester does not reflect this reality. Therefore, UAT’s degree programs are year-round in nature.

CUSTOMIZED CURRICULUM

This element in the learning environment at UAT allows students to combine customized classes into their Program of Study to enrich their learning experience. This makes a UAT technology degree as flexible in terms of content as it is in terms of delivery. Some options may include special topics courses, applied projects, applied research, internships or independent study.

STUDENT INNOVATION PROJECT

UAT encourages students to advance society through the ethical development of tomorrow’s most innovative technologies. Each freshman crafts an idea for a technology that accomplishes this mission, and over the course of their studies, with continual feedback from professors, professionals and peers, develop this concept into a complete Student Innovation Project.

INTERNSHIP

Internships are the synthesis of a student’s coursework, where they apply their learning to real-world applications and situations in their field of study. Students are expected to complete an internship to achieve specific objectives and learning goals that strengthen the value of their degree and their value to industry employers.

INDEPENDENT STUDY

Students can use independent study to rigorously explore ideas and applications where specific courses have not yet been created. Working with a faculty mentor, students identify learning goals and apply a high degree of discipline and motivation to deeply explore new topics, innovations and applications of technology.
PROGRAM OF STUDY
A program of study is the compilation of courses, credit hours and grades that make up a student’s educational degree at the University. A program of study includes those courses a student needs to take to complete their degree requirements, and courses currently in progress as well as courses already completed by the student. Students enrolled in any of UAT’s Undergraduate degree programs attend a full-time program. All undergraduate programs incorporate General Education, University Core and Major-Specific Requirements in the program of study.

UNIVERSITY CORE AND GENERAL EDUCATION
UNIVERSITY CORE AND GENERAL EDUCATION
OBJECTIVES—UNDERGRADUATE DEGREE
1. Student as globally minded individual: develops perspective on global matters, historical events, social conditions, and related developments through knowledge gathering and critical inquiry; makes connections between disparate ideas, concepts and events.
2. Student as problem-solver: articulates and solves problems; offers solutions based in scientific principles and methods, synthesizes knowledge of social and natural sciences; utilizes appropriate thinking strategies, including critical, systems, creative, lateral and parallel thinking.
3. Student as innovation leader: synthesizes and applies practical knowledge to determine community needs or desires and potential solutions.
4. Student as communicator: develops individual voice in oral presentation and written communication; articulates concepts and perspectives.
5. Student as community member: understands community concerns; engages with community; exemplifies high standard of digital citizenship.
6. Student as creator: understands fundamentals of technology product cycles from concept to design and applies it in tangible project outcomes.

UNIVERSITY CORE
The University’s Core curriculum addresses the question—what do all students of technology need to know? The Core prepares students to become part of, and be influential within, a globalized, technocentric world. To that end, Core classes engage students in the following ways:
> Core classes address universal concerns of all technological peoples and societies, including legal, ethical, historical and social ramifications of technological advancements.
> Core classes provide global contexts for skills and practices learned within specific majors.
> Core classes offer educational frameworks for students to think independently and practice professional skills-building.
> Core classes promote technological innovation, and invite students to explore their capacities as innovators of the 21st century.
Classes within the Core curriculum complement all of our majors and enable fulfillment of the University’s mission to educate students to become innovators. It is essential to the UAT student experience that the challenges they will face in the global community are easily comprehended with regard not only to specific industries and professions, but also to processes of continuous and often exponential change. In order to become thinking innovators, students must be able to comprehend how change occurs and why. Regardless of their selected degree, all students within the University are required to complete the Core curriculum in order to earn their degree from the University.

University Core Courses—Bachelor’s Degree

- LAW370 Legal Issues in Technology
- SIP311 Student Innovation Project I
- SIP483 Student Innovation Project II and Portfolio Presentation

Choose one of the following:

- BUS200 Entrepreneurship to Market
- TCH150 Technology and Society

Choose one of the following:

- TCH301 Ethics in Technology
- TCH310 Technology, Ethics, and Society

AND at least 3 credits in an internship:

- INT350 Internship
- INT400 Internship

University Core Courses—Associate’s Degree

- SIP311 Student Innovation Project I

Choose one of the following:

- BUS200 Entrepreneurship to Market
- TCH150 Technology and Society

GENERAL EDUCATION

UAT’s general education offers students transferable life skills that complement technical skills learned in the majors. Students receive invaluable education in the humanities, mathematics, science, languages, and other topics that build a foundation for discourse and expression that enriches their experience beyond the academic forum. This approach meets widespread expectations of the undergraduate learning experience that honors the motivation for higher education: betterment of self and the world around us.

General education brings into clarity the spectrum of human expression, modes of thought, and perspectives that enable all students to make profound connections between their technical skills and human development. In doing so, it complements the University’s technology-intensive environment by making students aware of how the broad spectrum of human experience and knowledge integrates with their technology discipline. Regardless of their selected degree, all students within the University are required to complete the general education curriculum in order to earn their degree from the University.

The general education curriculum engages students in the following ways:

- Articulation of student’s technological visions in globally aware contexts
- Effective communication, both orally and in written form
- Fluency in inquiry and problem-solving
- Knowledge-gathering in non-technical areas
- Comprehension of external perspectives

General Education Requirements—Bachelor of Arts Degree

Minimum 36 total general education credit hours, including:

- TCH115 Thinking Strategies
- Humanities and Social Sciences—Minimum 18 credit hours, minimum of 6 upper division credits, including:
 - ENG101 Composition I
 - ENG102 Composition II
 - COM226 Communication in Technology
- Mathematics and Science—Minimum 18 credit hours, minimum of 3 upper division credits

General Education Requirements—Bachelor of Science Degree

Minimum 36 total general education credit hours, including:

- TCH115 Thinking Strategies
- Humanities and Social Sciences—Minimum 12 credit hours, minimum of 3 upper division credits, including:
 - ENG101 Composition I
 - ENG102 Composition II
- Mathematics and Science—Minimum 18 credit hours, minimum of 3 upper division credits
UNIVERSITY OF ADVANCING TECHNOLOGY

General Education Requirements—
Associate of Arts Degree
Minimum 24 general education credit hours, including:
> TCH115 Thinking Strategies
> Humanities and Social Sciences—Minimum 9 credit hours including:
 > ENG101 Composition I
 > ENG102 Composition II
> Mathematics and Science—Minimum 6 credit hours

General Education Requirements—
Associate of Science Degree
Minimum 24 general education credit hours, including:
> TCH115 Thinking Strategies
> Humanities and Social Sciences—Minimum 9 credit hours including:
 > ENG101 Composition I
 > ENG102 Composition II
> Mathematics and Science—Minimum 9 credit hours

GENERAL EDUCATION COURSES
Mathematics and Science
AST301 The Solar System
AST302 Stars, Galaxies and Cosmology
BIO120 Introduction to Biology
MAT174 College Algebra
MAT179 Pre-Calculus
MAT210 Business Mathematics
MAT220 Statistics
MAT250 Calculus I
MAT251 Calculus II
MAT342 Linear Algebra
MAT388 Special Topics in Mathematics
PHY101 Physics
PHY125 Introduction to Electricity and Magnetism
PHY350 Physics Game Programming
PSY310 Social Psychology
SCI330 Green Technologies
SCI338 Special Topics in Science

Humanities and Social Sciences
ART231 Intermediate Drawing
COM226 Communications in Technology
ENG101 Composition I
ENG102 Composition II
ENG215 Topics in Creative Writing
ENG301 Technical Writing
ENG305 Mythology, Fable and Fairy Tale
ENG310 Science Fiction as Literature
ENG330 Crime Literature
HIS115 American History
HIS300 The World Wars: 1914-1945
HIS305 20th Century Innovations
HIS310 History of World Religions
HIS331 The Vietnam Era
HIS350 Civil War
HUM305 Countercultures
HUM310 Contemporary Themes in Humanities
HUM388 Special Topics in Humanities
JPN105 Introduction to Japanese Culture
JPN108 Level I Japanese
JPN208 Level II Japanese
JPN308 Level III Japanese
JPN408 Level IV Japanese
PHI313 Selected Topics in Philosophy
SS310 East Asian Cultures
SS320 Contemporary Global Issues
SS388 Special Topics in Social Science
THE230 Character Development
THE238 Acting and Movement
THE310 History of Movies
THE320 Introduction to Shakespeare
THE325 Movie Genre Studies
THE330 Script Writing

MAJOR-SPECIFIC REQUIREMENTS

Majors are established by the University in order to provide specialization and advanced work in a technological discipline. Each major represents an industry current technology field and is designed to change as the technology within the field progresses. In completing the course requirements of a major, students select topic areas that emphasize skills associated with specific industry targets.

The University has provided in this catalog grouped elective courses beyond the required courses for each major; however, each student may select courses from any major they desire in combination in order to individually customize their educational degrees beyond the minimum requirements.

Students are encouraged to seek out guidance from their Academic Advisor when making course choices.

GRADUATION REQUIREMENTS

A student will have earned a UAT degree when they have successfully fulfilled all of the following requirements for graduation:
1. Successful completion of an approved program of study.
2. Successful completion of the minimum credits required by UAT’s accrediting body for the desired degree.
3. Meet minimum Satisfactory Academic Progress Standards at the completion of their program of study.
4. Submittal of a completed and approved Application for Degree with the Office of the Registrar.
5. Completion of Student Innovation Project and portfolio requirement. Student Innovation Project and portfolio requirements include the submission and review of primarily digital artifacts to demonstrate the student’s capabilities within the discipline being studied (Bachelor’s degree candidates only).
ASSOCIATE AND BACHELOR OF ARTS MAJORS

Arts degrees at University of Advancing Technology are focused at the intersection of creativity, traditional art theory and technology application. At the core of these degrees is the understanding that art and technology reach into everyone’s lives, virtually all of the time, because technologies engage the primary senses of sight, sound and touch. Combining traditional art theory with technology application allows for the creation of intuitive, meaningful and striking presentation of information and innovation in the creation of product design and implementation. Students within arts majors will gain an appreciation for art, design and the intersection of these concepts with new technologies.

BACHELOR OF ARTS (BA)

DEGREE REQUIREMENTS

Minimum General Education Credits 36
Minimum Total Semester Credits 120
Within 120 minimum credit hours, the following requirements also apply:
> Minimum Degree-Specific Credits 30
> Minimum Total 300/400 Level Credits 39

ASSOCIATE OF ARTS (AA)

DEGREE REQUIREMENTS

Minimum General Education Credits 24
Minimum Total Semester Credits 60
Within 60 minimum credit hours, the following requirements also apply:
> Minimum Degree-Specific Credits 15

GRADUATION REQUIREMENTS

1. Successful completion of an approved program of study.
2. Successful completion of the minimum credits required by UAT’s accrediting body for the desired degree.
3. Meet minimum Satisfactory Academic Progress Standards at the completion of their program of study.
4. Submittal of a completed and approved Application for Degree with the Office of the Registrar.
5. Completion of Student Innovation Project and portfolio requirement. Student Innovation Project and portfolio requirements include the submission and review of primarily digital artifacts to demonstrate the student’s capabilities within the discipline being studied (Bachelor’s degree candidates only).

 Upon successfully completing the above requirements and meeting all University graduation requirements put forth in the graduation policy, a Bachelor or Associate of Arts degree will be awarded.

DEGREES

Courses within degrees are noted for students within each degree description. Taking all recommended credits within a degree may result in minimum credit hours required in the degree program exceeding 120 in the bachelor’s program and 60 in the associate’s program. Additionally, depending on the major, certain General Education or other courses may be required to fulfill prerequisites. Seeking guidance from a Student Services Advisor is encouraged to promote each student’s highest success.
DIGITAL MEDIA
Digital Media is a multifaceted, interdisciplinary program that provides for the aesthetic, critical and technical perspectives vital for professional careers in contemporary art and design practice. A diverse curriculum is presented, emphasizing aesthetic sensibility, programming literacy, creative expression and technical problem solving across a broad range of digital and physical forms of media communication. Starting with a solid foundation in traditional and digital arts, design, computer programming and interactivity, the program promotes the creation of innovative works that transform the way we communicate. Fostering experimentation, students will explore directions in visual communication design, interface and web design, augmented reality, and responsive and interactive experiences.

DIGITAL MEDIA DEGREE OBJECTIVES
1. Produce 2D digital media pieces in a variety of aesthetics matching design trends and client requirements.
2. Produce 3D and mixed media pieces in a variety of aesthetics that match design trends and client requirements.
3. Demonstrate the ability to produce completed works that combine captured, library and original digital media.
4. Demonstrate proficiency with accepted industry digital media generation, editing and presentation tools.
5. Demonstrate the ability to work within a studio production pipeline to create and revise digital media that meet client timeline, design and quality requirements.
6. Demonstrate the ability to match digital media formatting and presentation to the requirements a campaign incorporating print, web, video and digital distribution.

DIGITAL MEDIA DEGREE COURSES
Courses in bold text are required for a Bachelor of Arts in Digital Media. Courses with an asterisk (*) are required for an Associate of Arts in Digital Media.

FOUNDA TIONAL COURSES
ART103* Digital Asset Creation
ART112* Graphic Design Foundational Principles
ART121 Beginning Drawing I
ART260 Art and Technology
CIS100 Beginning Web Design
MTM215* Principles of Interactivity

SKILLS DEVELOPMENT COURSES
ART131 Algorithmic Art
ART209 Typography and Layout Design

ART255* Visual Communications/Graphics Design
AUD210 Audio Production for Digital Media
MTM213 2D Vector Animation
MTM235 Digital Illustration
MTM237 Advanced Illustrator
MTM430 Production Studio II

SYNTHESIS COURSES
ART342 Digital Painting
ART375 3D Screen Based Typography
ART388 Special Topics in Art
MTM308 Advanced Illustrator
MTM310 Aesthetic Principles of Interface Design
MTM330 Production Studio I
MTM371 Multimedia in Context

JOB TITLES
The Department of Education asks universities to associate their programs with relevant Classification of Instructional Programs (CIP) codes and specific Standard Occupational Classification (SOC) codes so that potential students can look at general occupations that would associate with the program. The CIP code and associated SOC codes and titles are supplied below for this program.

15-1021 Computer Programmers
27-1014 Multi-Media Artists and Animators
27-1024 Graphic Designers

*To retrieve a summary report from ONet please visit www.onetonline.org and enter the SOC code.

DIGITAL VIDEO
From the big screen of the local multiplex to the small screen of your favorite portable device, and everywhere in between, digital cinema is emerging as the ubiquitous communication medium of the 21st century. The Digital Video degree at UAT prepares students to become the creative technologists who work behind the scenes to bring these productions to life. Through explorations of the aesthetic principles of visual storytelling as established by the 100+ year history of cinema and animation, students can effectively communicate a message to an audience. Through the use and mastery of industry-standard production and post-production tools, Digital Video students apply those principles to produce polished and professional completed works with applications in the diverse industries of film, television, video production, animation, visual effects, and motion graphics.

As innovations in digital image acquisition, tapeless recording workflows, animation, motion capture, post-production and content distribution—to name but a few—continue to become the new standards of this industry, graduates from UAT’s Digital Video program will be uniquely positioned to apply new technological solutions to the task of delivering visual content to the ever-hungrier 21st century audience.

DIGITAL VIDEO DEGREE OBJECTIVES
1. Design and assemble preproduction materials to complement digital video works, including screenplays, character descriptions and designs, storyboards and shot lists.
2. Collaborate with other students in the Production Studio courses to produce complete digital cinema projects that exhibit professional quality in terms of camerawork, composition and lighting.
3. Integrate composite shots (either visual effects OR motion graphics) into complete works by employing industry-standard compositing tools and techniques to produce a digital cinema project that incorporates live-action video, textured and lit 3D environments, and animated or motion-captured CG characters.
4. Communicate stories and characters through acting, animation and/or motion capture.
5. Edit, mix and color grade digital cinema projects using industry standard non-linear editors and post-production tools.
6. Record, edit and mix high quality audio, including location dialogue, background ambiance, sound effects, ADR and music, which are integrated into a complete digital cinema production.
DIGITAL VIDEO DEGREE COURSES
Courses in bold text are required for a Bachelor of Arts in Digital Video. Courses with an asterisk (*) are required for an Associate of Arts in Digital Video.

FOUNDATIONAL COURSES
ART103* Digital Asset Creation
ART112 Graphic Design Foundational Principles
ART121 Beginning Drawing I
ART233 Concept Art (OR ART234 Storyboarding)
AUD102 Digital Audio Fundamentals
DBM150 Introduction to Maker Studio
DVA101* Digital Video Fundamentals
DVA110 Lighting and Environment Design
DVA130 Movie Theory
DVA238 Introduction to Directing and Producing
GAA110 Introduction to Game Art and Animation

SKILLS DEVELOPMENT COURSES
AUD210 Audio Production for Digital Media
DBM240 Electromechanical Devices
DVA234 Special Effects and Character Makeup
DVA241* Digital Video Production
DVA254 Motion Graphics
DVA260 Digital Photography
DVA274* Digital Video Editing
DVA335 Digital Video Cinematography
DVA353* Visual Effects Compositing
GAA220 3D Modeling Environments and FX
GAA230 3D Modeling Characters and Vehicles
GAA330 Characters and Vehicle Animation
MTM125 Introduction to 3D Studio Max and Maya

SYNTHESIS COURSES
DBM330 Maker Studio I
DBM430 Maker Studio II
DVA310 Lighting and Environment Design II
DVA320 3D Material, Lighting and Rendering for Film and Video
DVA323* Digital Video Production Studio I
DVA334 Special Effects and Character Makeup II
DVA354 Advanced Motion Graphics
DVA371 Advanced Digital Video Editing
DVA451 Advanced Visual Effects
DVA492 Digital Video Production Studio II
DVA493 Digital Video Production Studio III
DVA494 Digital Video Production Studio IV
GAA430 Advanced Character Rigging and MoCap Animation
GAA450 Advanced Materials, Shaders and Lighting

RECOMMENDED ELECTIVES
GAA240 Game Texturing
GAA320 Environmental and FX Animation
GAA440 Advanced Game Character Creation

JOB TITLES
The Department of Education asks universities to associate their programs with relevant Classification of Instructional Programs (CIP) codes and specific Standard Occupational Classification (SOC) codes so that potential students can look at general occupations that would associate with the program. The CIP code and associated SOC codes and titles are supplied below for this program.

27-1014 Multimedia Artists and Animators
27-3099 Media and Communications Workers
27-4012 Broadcast Technicians
27-4014 Sound Engineering Technicians
27-4032 Film and Video Editors

*To retrieve a summary report from O*Net please visit www.onetonline.org and enter the SOC code.

GAME ART AND ANIMATION
Students in the Game Art and Animation program will gain an insight into what is involved at all levels of game development to create 3D art assets for multiple video game platforms such as PC, consoles, handheld games, Internet, phone and other hybrids. Students will master the artistic principles used in 3D video games art asset creation such as color theory, lighting, shading, anatomy, life drawing, perspective, scene staging, modeling low polygon and high polygon, 3D mesh topology, texturing, rigging, hand key character and prop animations, as well as motion capture and facial animation. Students in this program will be prepared for jobs such as character artist modeler and texture artist, character artist animator and rigger, environment artist modeler and texture artist, environment artist animator, mechanical mesh modeler and texture artist, and mechanical mesh animator and rigger.

GAME ART AND ANIMATION DEGREE OBJECTIVES
1. Demonstrate and communicate aesthetic skills and choices based on traditional art theories and current game development practiced and next generation research.
2. Conceptualize and generate pre-production art assets through pre-visualization and prototypes usable for multiple game platforms.
3. Create 2D and 3D art assets such as characters, props, textures, environment elements (terrain, ecosystems, architecture, and skybox), and collision objects for future prototyping (fully optimized) utilizing industry standard software tools and platform guidelines.
4. Create 2D and 3D keyframed and motion capture character, environmental and FX animation assets appropriate for use in game projects utilizing industry standard software tools, pipelines and platform guidelines.
5. Within a production pipeline; adapt, export, integrate, and optimize game art and animation assets (including shaders and lighting) into 2D and 3D game projects within the confines of a project’s game engines, tools and other constraints.
6. Establish collaboration, mentorship, and professional leadership skills by working with other disciplines to deliver highly polished and completed projects.
GAME ART AND ANIMATION DEGREE COURSES

Courses in bold text are required for a Bachelor of Arts in Game Art and Animation. Courses with an asterisk (*) are required for an Associate of Arts in Game Art and Animation.

FOUNDATIONAL COURSES

ART233 Concept Art
ART234 Storyboarding
ART240 Figure and Character Sculpting
GAA105* Game Art and Animation Fundamentals
GAA110* Introduction to Game Art and Animation
GAM125* Introduction to Game Development

SKILLS DEVELOPMENT COURSES

GAA220* 3D Modeling Environments and FX
GAA230 3D Modeling Characters and Vehicles
GAA240 Game Texturing
GAA320 Environmental and FX Animation
GAA330 Characters and Vehicles Animation
GAA360 UI Design and Animation

SYNTHESIS COURSES

GAA420 Advanced Game Environment Creation
GAA430 Advanced Character Rigging and MoCap Animation
GAA440 Advanced Game Character Creation
GAA450 Advanced Materials, Shaders and Lighting
GAA490 Industry Professional Development
GAM281 Production Studio I
GAM381 Production Studio II
GAM481 Production Studio III

JOB TITLES

The Department of Education asks universities to associate their programs with relevant Classification of Instructional Programs (CIP) codes and specific Standard Occupational Classification (SOC) codes so that potential students can look at general occupations that would associate with the program. The CIP code and associated SOC codes and titles are supplied below for this program.

15-1021 Computer Programmers
27-1014 Multi-Media Artists and Animators
27-1024 Graphic Designers

*To retrieve a summary report from O*Net please visit www.onetonline.org and enter the SOC code.

GAME DESIGN

Game Design students focus on the design principles, skills and techniques required to create mechanics, design documents and functioning prototypes for innovative game projects. Game Design students will be exposed to all the tools of the trade, as well as programming and asset creation skill sets. The coursework emphasizes design skills such as strong initial concepts, design documentation, game balancing and play-testing, interactive storytelling and interface design.

Students in the Game Design program will also take a critical approach to the study of gameplay, player interaction and community dynamics as well as the unique features of the numerous game platforms available in the marketplace. In team-based projects, design students will work with artists and programmers to create complete projects. Applying all the elements of the game creation process, Game Design students will also develop the leadership skills to see projects through from initial concept to publisher-ready final product.

GAME DESIGN DEGREE OBJECTIVES

1. Prototype and complete original games for multiple platforms following the full game production pipeline.
2. Create and implement game elements, systems, and play mechanics using industry standard tools, techniques, and production methods, including both art and scripting/programming applications.
3. Demonstrate effective game design practices and techniques within the project scope and context such as genre, style, platform and audience.
4. Demonstrate the ability to evaluate game designs for a variety of game play mechanics, game applications and game genres.
5. Effectively articulate game design elements and mechanics across disciplines utilizing written and verbal communication skills.
6. Establish collaboration, mentorship, and professional leadership skills by working with other disciplines to deliver highly polished and completed projects.

GAME DESIGN DEGREE COURSES

Courses in bold text are required for a Bachelor of Arts in Game Design. Courses with an asterisk (*) are required for an Associate of Arts in Game Design.

FOUNDATIONAL COURSES

GAM101* Introduction to Game Design
GAM113* Introduction to Game Tools
GAM125* Introduction to Game Development

SKILLS DEVELOPMENT COURSES

GAM170* Game Design Workshop I
GAM175 Game Testing and Analysis
GAM200 Critical Game Studies
GAM218 Game Scripting for Designers
GAM235 Advanced Level Design
GAM310 Level Design

SYNTHESIS COURSES

GAM281 Production Studio I
GAM330 Advanced Level Design
GAM351 Writing for Interactive Games
GAM370 Game Design Workshop II
GAM375 Rapid Game Prototyping and Experimental Gameplay
GAM381 Production Studio II
GAM385 Casual Game Design
GAM404 Applied Game Development
GAM481 Production Studio III
GAM495 Industry Professional Development

RECOMMENDED ELECTIVE

GAM150 Evolution of Electronic Games
JOBTITLES
The Department of Education asks universities to associate their programs with relevant Classification of Instructional Programs (CIP) codes and specific Standard Occupational Classification (SOC) codes so that potential students can look at general occupations that would associate with the program. The CIP code and associated SOC codes and titles are supplied below for this program.

15-1021 Computer Programmers
27-1014 Multi-Media Artists and Animators
27-1024 Graphic Designers
*To retrieve a summary report from ONet please visit www.onetonline.org and enter the SOC code.

SERIOUS GAME AND SIMULATION
Gaming technology and practices have become a part of everyday life, and there is a growing expectation that gaming-based technologies and interactions are being embraced by mainstream businesses and organizations. The Serious Game and Simulation degree uses game design as a base and applies the design principles of gaming to serious applications such as corporate training, medical and therapeutic, military and education. As this is a highly technical field, students will be exposed to all the tools of the trade as well as mid-level programming and asset creation skill sets. The coursework emphasizes design skills such as strong initial concepts, design documentation, game balancing and play-testing, interactive storytelling and interface design with an eye towards developments in the Serious Games field. Students in the Serious Games program will also take a critical approach to the study of gameplay, player interaction and community dynamics as well as the unique features of the numerous game platforms available in the marketplace. In team-based projects, design students will work with artists and programmers to create complete projects. Applying all the elements of the game creation process, students will also develop the leadership skills to see projects through from initial concept to publisher-ready final product.

SERIOUS GAME AND SIMULATION DEGREE OBJECTIVES
1. Prototype and complete original serious and simulation games for multiple platforms following the full game production pipeline.
2. Create and implement game elements, systems, and play mechanics using industry standard tools, techniques, and production methods, including both art and scripting/programming applications.
3. Design and produce projects that leverage game mechanics and learning styles to enhance the outcomes of applications such as training, medical, therapeutic, military or learning based environments.
4. Effectively articulate game design elements and mechanics across disciplines utilizing written and verbal communication skills that demonstrate visualizations representing data, real world entities, events and interactions.
5. Analyze and apply delivery methods, legal considerations, and user expectations specific to applications of serious games and simulations.
6. Establish collaboration, mentorship, and professional leadership skills by working with other disciplines to deliver highly polished and completed projects.

SERIOUS GAME AND SIMULATION DEGREE COURSES
Courses in bold text are required for a Bachelor of Arts in Serious Game and Simulation. Courses with an asterisk (*) are required for an Associate of Arts in Serious Game and Simulation.

FUNDAMENTAL COURSES
ART103 Digital Asset Creation
GAM101 Introduction to Game Design
GAM113 Introduction to Game Tools
GAM115* Introduction to Serious Games
GAM125* Introduction to Game Development
GAM170 Game Design Workshop
HCI101 Introduction to Human-Computer Interaction

SKILLS DEVELOPMENT COURSES
GAM175 Game Testing and Analysis
GAM200 Critical Game Studies
GAM218 Game Scripting for Designers
GAM260 Instructional Design
GAM310 Level Design
HCI210 Virtual Environments
HCI310 Designing Human-Computer Interfaces

SYNTHESIS COURSES
GAM281 Production Studio I
GAM375 Rapid Game Prototyping and Experimental Gameplay
GAM380 Serious Game Design
GAM381 Production Studio II
GAM404 Applied Game Development
GAM481 Production Studio III
GAM495 Industry Professional Development

JOBTITLES
The Department of Education asks universities to associate their programs with relevant Classification of Instructional Programs (CIP) codes and specific Standard Occupational Classification (SOC) codes so that potential students can look at general occupations that would associate with the program. The CIP code and associated SOC codes and titles are supplied below for this program.

15-1021 Computer Programmers
27-1014 Multi-Media Artists and Animators
27-1024 Graphic Designers
*To retrieve a summary report from ONet please visit www.onetonline.org and enter the SOC code.
ASSOCIATE AND BACHELOR OF SCIENCE MAJORS

Science majors at UAT were created in response to a need for professional technology graduates in the emerging disciplines at the intersection of science and technology. Each science major requires students to explore the conceptual, scientific underpinning of their technology discipline so that, as the discipline advances, their capacity advances with it. Each major offers an opportunity to understand how technology integrates into society, adding functionality and speed to activity. Students in these majors will have the opportunity to learn and create software applications that advance their discipline. Graduates will be prepared for employment in companies of various size and complexity, from small businesses to enterprise-level corporations.

BACHELOR OF SCIENCE (BS)

DEGREE REQUIREMENTS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum General Education Credits</td>
<td>36</td>
</tr>
<tr>
<td>Minimum Total Semester Credits</td>
<td>120</td>
</tr>
<tr>
<td>Within 120 minimum credit hours, the following requirements also apply:</td>
<td></td>
</tr>
<tr>
<td>> Minimum Degree-Specific Credits</td>
<td>30</td>
</tr>
<tr>
<td>> Minimum Total 300/400 Level Credits</td>
<td>39</td>
</tr>
</tbody>
</table>

ASSOCIATE OF SCIENCE (AS)

DEGREE REQUIREMENTS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum General Education Credits</td>
<td>24</td>
</tr>
<tr>
<td>Minimum Total Semester Credits</td>
<td>60</td>
</tr>
<tr>
<td>Within 60 minimum credit hours, the following requirements also apply:</td>
<td></td>
</tr>
<tr>
<td>> Minimum Degree-Specific Credits</td>
<td>15</td>
</tr>
</tbody>
</table>

GRADUATION REQUIREMENTS

1. Successful completion of an approved program of study.
2. Successful completion of the minimum credits required by UAT’s accrediting body for the desired degree.
3. Meet minimum Satisfactory Academic Progress Standards at the completion of their program of study.
4. Submittal of a completed and approved Application for Degree with the Office of the Registrar.
5. Completion of Student Innovation Project and portfolio requirement. Student Innovation Project and portfolio requirements include the submission and review of primarily digital artifacts to demonstrate the student’s capabilities within the discipline being studied (Bachelor’s degree candidates only).

Upon successfully completing the above requirements and meeting all University graduation requirements put forth in the graduation policy, a Bachelor or Associate of Science degree will be awarded.

DEGREES

Courses within degrees are noted for students in each degree description. Taking all recommended credits within a degree may result in minimum credit hours required in the degree program exceeding 120 in the Bachelor’s program and 60 in the Associate’s program. Additionally, depending on the major, certain General Education or other courses may be required to fulfill prerequisites. Seeking guidance from a Student Services Coordinator is encouraged to promote each student’s highest success.
ADVANCING COMPUTER SCIENCE

The Advancing Computer Science (ACS) degree involves students in the craft of programming. The craft of programming transcends individual programming languages and emphasizes design across multiple scales, from the design of individual programs to complex multi-platform software architectures. The ACS program balances the science of computing and the art of design, with the application of these principles to real-world problems. Graduates in ACS will be prepared for software development positions where understanding of algorithms, computing theory and complex software design are important.

ADVANCING COMPUTER SCIENCE DEGREE OBJECTIVES

1. Follow a software development process to analyze a problem, and to design, build and test software solutions.
2. Demonstrate software development skills using more than one programming language and development environment.
3. Design and implement software solutions across multiple platforms.
4. Design and implement software solutions for mobile devices or embedded systems.
5. Document the planning and development of software applications using industry standard tools, techniques and processes.
6. Within software solutions describe, implement and analyze data structure techniques such as lists, trees, hash tables, graphs, along with sorting and searching algorithms.

ADVANCING COMPUTER SCIENCE DEGREE COURSES

Courses in bold text are required for a Bachelor of Science in Advancing Computer Science. Courses with an asterisk (*) are required for an Associate of Science in Advancing Computer Science.

FOUNDATIONAL COURSES

CIS100 Beginning Web Design
CSC102* Introduction to Programming
CSC202 C# Programming I
CSC203 Java Programming I
CSC215* C/C++ Programming I

SKILLS DEVELOPMENT COURSES

CIS240 Building Dynamic Websites I
CSC211 Introduction to Databases
CSC262 C# Programming II
CSC263 Java Programming II
CSC275* C++ Programming II

SYNTHESIS COURSES

CIS318 Software Engineering Principles
CSC330 Mobile Platform Software Development
CSC340 Big Data Essentials
CSC350 Software Quality Assurance
CSC360 Artificial Life
CSC382 Data Structures and Algorithms

ARTIFICIAL LIFE PROGRAMMING

Artificial Life Programming derives inspiration from biology to design and build software systems that solve complex real-world problems. The concepts studied in this program compliment the traditional computer science approach by providing additional problem-solving methods and techniques. Students will study and develop applications using evolutionary and genetic algorithms, cellular automata, artificial neural networks, agent-based models, and other artificial life methodologies. Artificial life programming can be applied to many areas, including architecture, autonomous systems, computer games, distributed systems, economics and market dynamics, machine intelligence, self-assembly and self-organization and sociology.

ARTIFICIAL LIFE PROGRAMMING DEGREE OBJECTIVES

1. Create object-oriented software applications and problem solutions using artificial life methodologies such as L-system and evolutionary algorithms.
2. Follow a software development process to analyze a problem, and to design, build and test software systems in a team environment.
3. Demonstrate software development skills using more than one programming language, development environment, platform, and source control system.
4. Evaluate problems and create software solutions that demonstrate appropriate applications for the following artificial life methodologies: L-systems, evolutionary algorithms, agent-based models, cellular automata and neural networks.
5. Describe, implement and analyze artificial intelligence applications.
6. Describe, implement and analyze fundamental data structures including lists, trees, hash tables, graphs, algorithms including sorting and searching.

JOB TITLES

The Department of Education asks universities to associate their programs with relevant Classification of Instructional Programs (CIP) codes and specific Standard Occupational Classification (SOC) codes so that potential students can look at general occupations that would associate with the program. The CIP code and associated SOC codes and titles are supplied below for this program.

15-1021 Computer Programmers
15-1099 Computer Specialists, All other
25-1021 Computer Science Teachers, Postsecondary

*To retrieve a summary report from ONet please visit www.onetonline.org and enter the SOC code.
In recent years, the field of business technology has grown rapidly in conjunction with advances in technology, new business models, regulatory issues, development methodology, managing cross functional and international teams, strategic management, innovation and go-to-market strategies thus creating a demand for unique combination of technical, strategic, critical, financial, analytical and managerial skills that allow them to excel in such high-demand areas as strategic management, global business, innovation, technology product development, and project management in start up, private and public sector firms.

In recent years, the field of business technology has grown rapidly in conjunction with advances in technology, new business models, regulatory issues, development methodology, managing cross functional and international teams, strategic management, innovation and go-to-market strategies thus creating a demand for dynamic cross functional skills.

University of Advancing Technology’s undergraduate degree program develops necessary foundational and mission critical expertise in the underlying disciplines of business technology with a strong background in the associated disciplines and frameworks. Students learn to apply and integrate this knowledge within a variety of actionable and real world functions. The Business Technology program and degree fully prepares students for managerial and executional excellence.

BUSINESS TECHNOLOGY DEGREE OBJECTIVES

1. Demonstrate the ability to create and document technology strategies and product development plans.
2. Demonstrate the ability to assemble resources and infrastructure needed to successfully take technologies to market.
3. Demonstrate capacity to apply lean/agile approaches in the development of organizational mission, strategy and technology product development.
4. Demonstrate baseline knowledge of business operational elements (finance, legal, operations, resources, marketing, market analysis, manufacturing and supply infrastructure).
5. Demonstrate competency in leading technology teams.
6. Generate and visualize data for use as decision making analytics that metric and communicate organizational performance.

BUSINESS TECHNOLOGY DEGREE COURSES

Courses in bold text are required for a Bachelor of Science in Business Technology. Courses with an asterisk (*) are required for an Associate of Science in Artificial Life Programming.

ARTIFICIAL LIFE PROGRAMMING DEGREE COURSES

Courses in bold text are required for a Bachelor of Science in Artificial Life Programming. Courses with an asterisk (*) are required for an Associate of Science in Artificial Life Programming.

FOUNDATIONAL COURSES

CSC102* Introduction to Programming
CSC202 C# Programming I
CSC203 Java Programming I
CSC215* C/C++ Programming I

SKILLS DEVELOPMENT COURSES

CSC211 Introduction to Databases
CSC262 C# Programming II
CSC263 Java Programming II
CSC275 C/C++ Programming II
CSC318 Software Engineering Principles
CSC330 Mobile Platform Software Development
CSC350 Software Quality Assurance
CSC360 Artificial Life
CSC382 Data Structures and Algorithms

SYNTHESIS COURSES

CSC370 Artificial Intelligence
CSC406 Special Topics in Artificial Life
CSC413 Advanced Software Development I

JOB TITLES

The Department of Education asks universities to associate their programs with relevant Classification of Instructional Programs (CIP) codes and specific Standard Occupational Classification (SOC) codes so that potential students can look at general occupations that would associate with the program. The CIP code and associated SOC codes and titles are supplied below for this program.

15-1021 Computer Programmers
15-1099 Computer Specialists, All other
25-1021 Computer Science Teachers, Postsecondary

*To retrieve a summary report from ONet please visit www.onetonline.org and enter the SOC code.

BUSINESS TECHNOLOGY

This cutting-edge program is designed to prepare students for top jobs in today's technologically oriented business world. By combining dynamic and synergistically chosen curriculum from UAT's existing course requirements, students learn a unique combination of technical, strategic, critical, financial, analytical and managerial skills that allow them to excel in such high-demand areas as strategic management, global business, innovation, technology product development, and project management in start up, private and public sector firms.

In recent years, the field of business technology has grown rapidly in conjunction with advances in technology, new business models, regulatory issues, development methodology, managing cross functional and international teams, strategic management, innovation and go-to-market strategies thus creating a demand for these dynamic cross functional skills.
6. Demonstrate proficiency with industry accepted prototyping, modeling, build

5. Demonstrate the ability to work within a maker studio environment to

4. Demonstrate the ability to evaluate and implement developments within

3. Demonstrate the ability to evaluate material and build technique options during

2. Demonstrate the ability to evaluate trends in design principles and apply them

1. Demonstrate the ability to prototype, build and apply for patents for technology

DIGITAL MAKER AND FABRICATION DEGREE OBJECTIVES

Contemporary society has embraced and come to rely on technology, so much so that it is entrenched in our everyday lives. This shift towards a technology driven society has created the need for technology products to be designed to fit the everyday, busy lives of consumers. If a device does not mesh with a person’s lifestyle, it will quickly become obsolete. In all capacities—whether for home, work or leisure use—gaining a firm grasp of what the consumer needs in these devices is essential to moving technology forward. Powerful mobile devices are increasingly replacing the functionality of larger, more cumbersome devices such as the PC. As this transition takes place, the need for intelligently designed products will continue to grow. Integrated devices and services in cars, homes and offices will interact with wearable devices to give the consumer a content-rich, context-driven experience. Designing, programming and building these devices will give students a firm grasp on the next generation of hardware devices and how these devices will shape the future of society.

DIGITAL MAKER AND FABRICATION DEGREE COURSES

Courses in bold text are required for a Bachelor of Science in Digital Maker and Fabrication. Courses with an asterisk (*) are required for an Associate of Science in Digital Maker and Fabrication.

FOUNDATION COURSES

ART112	Graphic Design Foundational Principles
ART121	Beginning Drawing I
ART233	Concept Art
CSC102	Computer Programming Concepts
CSC215	C/C++ Programming I
DBM100	3D Build Tools
EN200	Introduction to Business and Entrepreneurship
HG1101*	Introduction to Human-Computer Interaction
HC102	Human Factors
MTM215	Principles of Interactivity
RBT131	Digital Logic Basic Processor Design
RBT205	Mechanics and Materials
TCH100**	Introduction to Design

SKILLS DEVELOPMENT COURSES

DBM215	Prototyping Tools and Practice
DBM240	Electromechanical Devices
DBM350	Wearable Technologies
HCI101	Designing Human-Computer Interfaces
RBT173	Introduction to Microcontrollers
RBT211	Arduino Embedded Programming
TCH200	Product Development
TCH270**	The Design Process

SYNTHESIS COURSES

DBM130	Maker Studio I
DBM131	Maker Studio II
HCI470	Emerging Interface Technologies
RBT307	Physical Computing Studio
TCH405	Technology Product Design Project
TCH410	Advanced Topics in Technology Product Design
TCH491	New Technologies: Innovation, Production and the Market

JOB TITLES

The Department of Education asks universities to associate their programs with relevant Classification of Instructional Programs (CIP) codes and specific Standard Occupational Classification (SOC) codes so that potential students can look at general occupations that would associate with the program. The CIP code and associated SOC codes and titles are supplied below for this program.

11-3021 Computer and Information Systems Managers
15-1011 Computer and Information Scientists, Research
15-1051 Computer Systems Analysts
15-1061 Database Administrators
15-1071 Network and Computer Systems Administrators
15-1081 Network Systems and Data Communications Analysts
15-1099 Computer Specialists, All other
25-1021 Computer Science Teachers, Postsecondary

*To retrieve a summary report from ONet please visit www.onetonline.org and enter the SOC code.
ENTERPRISE SOFTWARE DEVELOPMENT

The Enterprise Software Development degree is focused on preparing graduates to design, code, build, test, deploy and manage software for businesses. Modern businesses depend on software systems to support their processes and to provide a competitive edge. Enterprise software developers apply industry best practices in software development to meet the changing needs of the enterprise. Students will learn to craft quality code that meets requirements and delivers value to the customer. Graduates with this degree will be prepared for careers as software project managers, architects, programmers and others involved in the enterprise software development life cycle.

ENTERPRISE SOFTWARE DEVELOPMENT DEGREE OBJECTIVES

1. Develop an enterprise quality application that utilizes an industry standard database framework.
2. Analyze enterprise business processes and visualize them using analytics, metrics and dashboards.
3. Follow a software development process to analyze a problem and to design, build, test and document enterprise software solutions meeting specified requirements.
4. Demonstrate software development skills using more than one programming language, development environment, platform and source control system by developing multiple software applications.
5. Describe, implement and analyze enterprise level software quality processes and practices.
6. Within software solutions describe, implement and analyze data structure techniques such as lists, trees, hash tables, graphs, along with sorting and searching algorithms.

ENTERPRISE SOFTWARE DEVELOPMENT DEGREE COURSES

Courses in bold text are required for a Bachelor of Science in Enterprise Software Development. Courses with an asterisk (*) are required for an Associate of Science in Enterprise Software Development.

FOUNDATIONAL COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC102*</td>
<td>Introduction to Programming</td>
</tr>
<tr>
<td>CSC202</td>
<td>C# Programming I</td>
</tr>
<tr>
<td>CSC203</td>
<td>Java Programming I</td>
</tr>
<tr>
<td>CSC215*</td>
<td>C/C++ Programming I</td>
</tr>
<tr>
<td>MGT102*</td>
<td>Management in a Technology Development</td>
</tr>
</tbody>
</table>

SKILLS DEVELOPMENT COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC211</td>
<td>Introduction to Databases</td>
</tr>
<tr>
<td>CSC262</td>
<td>C# Programming II</td>
</tr>
<tr>
<td>CSC263</td>
<td>Java Programming II</td>
</tr>
<tr>
<td>CSC275</td>
<td>C++ Programming II</td>
</tr>
<tr>
<td>CSC318</td>
<td>Software Engineering Principles</td>
</tr>
<tr>
<td>CSC330</td>
<td>Mobile Platform Software Development</td>
</tr>
<tr>
<td>CSC350</td>
<td>Software Quality Assurance</td>
</tr>
<tr>
<td>CSC382</td>
<td>Data Structures and Algorithms</td>
</tr>
<tr>
<td>MGT215</td>
<td>Strategic Planning and Analytics</td>
</tr>
<tr>
<td>MGT322</td>
<td>Financial Management in a Technology Environment</td>
</tr>
</tbody>
</table>

SYNTHESIS COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC413</td>
<td>Advanced Software Development I</td>
</tr>
<tr>
<td>MGT423</td>
<td>Data Visualization and Mining</td>
</tr>
<tr>
<td>MGT441</td>
<td>Business Intelligence and Data Management</td>
</tr>
</tbody>
</table>

RECOMMENDED GENERAL EDUCATION COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT220</td>
<td>Statistics</td>
</tr>
<tr>
<td>MAT251</td>
<td>Calculus II</td>
</tr>
</tbody>
</table>

JOB TITLES

The Department of Education asks universities to associate their programs with relevant Classification of Instructional Programs (CIP) codes and specific Standard Occupational Classification (SOC) codes so that potential students can look at general occupations that would associate with the program. The CIP code and associated SOC codes and titles are supplied below for this program.

15-1021 Computer Programmers
15-1099 Computer Specialists, All other
25-1021 Computer Science Teachers, Postsecondary

*To retrieve a summary report from ONet please visit www.onetonline.org and enter the SOC code.
GAME PROGRAMMING

Courses in game programming will emphasize the essential issues and the skills required to develop games for multiple platforms such as web, console, PC and mobile devices. These skills have broader applications in related industries such as entertainment, business, research and training. Game programming students begin with the programming principles, skills and techniques shared in all programming disciplines and then specifically focus on game-specific features and techniques. Game programming emphasizes C++ programming, scripting, data handling, DirectX/Open GL development, game engine architecture, gameplay interaction, artificial intelligence, networking and the use of middleware and industry APIs. Students in game programming will also develop a critical approach to the study of gameplay, interaction and design. The UAT game programming student will have a broad, deep skill set and be comfortable on many platforms and with a myriad of languages.

GAME PROGRAMMING DEGREE OBJECTIVES
1. Implement multiple completed games, including 3D games, using common tools, languages, and software for web, console, PC or mobile platforms.
2. Design, develop and implement the architecture and infrastructure needed to support a complete game project.
3. Implement and analyze fundamental data structures and algorithms associated with game applications supporting gameplay mechanics.
4. Use software development processes to analyze a project problem, and to design, build and test a corresponding software solution.
5. Demonstrate development skills using multiple programming languages, development environments, and platforms, including advanced and/or experimental topics in game programming.
6. Establish collaboration, mentorship, and professional leadership skills by working with other disciplines to deliver highly polished and completed projects.

GAME PROGRAMMING DEGREE COURSES
Courses in bold text are required for a Bachelor of Science in Game Programming. Courses with an asterisk (*) are required for an Associate of Science in Game Programming.

FOUNDATIONAL COURSES
CSC102* Introduction to Programming
CSC202 C# Programming I
CSC203 Java Programming I
CSC215* C/C++ Programming I
GAM104* Introduction to Game Programming
GAM125* Introduction to Game Development
GAM205* Gameplay Programming Concepts

SKILLS DEVELOPMENT COURSES
CSC275 C++ Programming II
CSC382 Data Structures and Algorithms
GAM175 Game Testing and Analysis
GAM125* Introduction to Game Development
GAM240* Game Engine Programming I
GAM275 Mobile Game Programming
GAM303 Applied Game AI Concepts
GAM333 Scripting Integration
PHY350 Physics Game Programming

SYNTHESIS COURSES
GAM281 Production Studio I
GAM324 Graphics Programming
GAM338 Advanced Gameplay Programming
GAM341 Game Tools Development
GAM361 Multiplatform Programming
GAM381 Production Studio II
GAM481 Production Studio III
GAM495 Industry Professional Development

RECOMMENDED ELECTIVES
CSC262 C# Programming II
CSC263 Java Programming II
CSC313 Operating Systems Theory
CSC413 Advanced Software Development I

RECOMMENDED GENERAL EDUCATION COURSES:
MAT251 Calculus II
MAT342 Linear Algebra

JOB TITLES
The Department of Education asks universities to associate their programs with relevant Classification of Instructional Programs (CIP) codes and specific Standard Occupational Classification (SOC) codes so that potential students can look at general occupations that would associate with the program. The CIP code and associated SOC codes and titles are supplied below for this program.

15-1021 Computer Programmers
27-1014 Multi-Media Artists and Animators
27-1024 Graphic Designers

*To retrieve a summary report from ONet please visit www.onetonline.org and enter the SOC code.
HUMAN-COMPUTER INTERACTION

Human-Computer Interaction (HCI) is an interdisciplinary field that attracts researchers, educators and practitioners from many different disciplines. HCI has gained even more attention during recent years as technologies have moved forward at an accelerating pace. HCI now goes beyond keyboards, mice and screens to include various handheld devices and touch-screen interactions. Human-Computer Interaction has its foundations on the interfaces and interactions between electronic devices and the users that rely upon them, that will ultimately lead to the creation of tomorrow’s new user interface software and technology.

As technology has moved forward, interaction with it has become more intuitive and complex. This presents the need for well-designed and developed interactions to ensure a positive experience for the user. The study and practice of designing these interactions transforms the human-computer interaction experience, so the computer is not longer a distracting focus of attention but rather an invisible tool that empowers the individual user and facilitates natural and productive human-to-human collaboration. This will allow for the creation of the next generation of interface technologies. The move away from installable software to more mobile apps and cloud-hosted solutions is dramatically changing how people interact with technology and influencing their expectations from a design standpoint.

HCI topics include, but are not limited to, novel uses of computer technologies in education; intelligent interfaces; virtual and augmented reality environments; wearable mobile and ubiquitous computing; and new I/O devices. Social networking: Facebook, Instagram, Twitter, LinkedIn, etc., are also huge influencers of HCI nowadays.

HUMAN-COMPUTER INTERACTION DEGREE OBJECTIVES

1. Gain an understanding and articulate the fundamental design concepts and practices associated with the design of human-computer interactions.
2. Evaluate the impact of new and emerging technology trends on human-computer interactions and the user experience.
3. Evaluate the impact of domains of emerging concern such as security, authentication, identification and automation on the design of user experience and human-computer interaction.
4. Analyze human factors such as cognition, affect and behavior as they relate to the human computer interaction and apply them in the development of human-computer interactions.
5. Synthesize and evaluate sound design principles and aesthetics as they apply to the design of innovative interfaces.
6. Prototype and produce innovative interfaces or interactions for at least two of the following: web, PC, mobile, handheld or next generation platforms, including all production materials required in a complete pipeline using industry standard tools, software and production processes.

HUMAN-COMPUTER INTERACTION DEGREE COURSES

Courses in bold text are required for a Bachelor of Science in Human-Computer Interaction. Courses with an asterisk (*) are required for an Associate of Science in Human-Computer Interaction.

FOUNDATIONAL COURSES

ART103	Digital Asset Creation
ART112	Graphic Design Foundational Principles
CIS100	Beginning Web Design
CSC102	Introduction to Programming
DBMI00	3D Build Tools
HCI101*	Introduction to Human-Computer Interaction
HCI102*	Human Factors
HCI225	Sketching and Prototyping
HCI320	Gender and Technologies
MTM215	Principles of Interactivity

SKILLS DEVELOPMENT COURSES

ART209	Typography and Layout Design
CIS240	Building Dynamic Websites I
DBM215	Prototyping Tools and Practice
HCI210	Virtual Environments
HCI250	User Experience Design and Testing
HCI310	Designing Human-Computer Interfaces
MTM235	Digital Illustration
RBT173	Introduction to Microcontrollers
TCH200	Product Development

SYNTHESIS COURSES

ART375	3D Screen Based Typography
ART388	Special Topics in Art
CIS340	Building Dynamic Websites II
HCI450	Human-Computer Interface Project
HCI470	Emerging Interface Technologies
HCI490	Special Topics in HCI
MTM310	Aesthetic Principles of Interface Design
RBT307	Physical Computing Studio

RECOMMENDED ELECTIVES

| ART121 | Beginning Drawing I |
| RBT131 | Digital Logic Basic Processor Design |

JOB TITLES

The Department of Education asks universities to associate their programs with relevant Classification of Instructional Programs (CIP) codes and specific Standard Occupational Classification (SOC) codes so that potential students can look at general occupations that would associate with the program. The CIP code and associated SOC codes and titles are supplied below for this program.

15-1021 Computer Programmers
27-1014 Multi-Media Artists and Animators
27-1024 Graphic Designers

*To retrieve a summary report from ONet please visit www.onetonline.org and enter the SOC code.
NETWORK ENGINEERING
Today's increasingly connected digital world has created an Internet/data-dependent society. Highly skilled Network Engineers are responsible for the design, implementation and maintenance of our networked systems. They must be proficient in both networking and the IT systems. This degree program will provide you with a well-rounded knowledge base from which to draw upon. A strong foundational knowledge of network and systems engineering concepts form the base on which the advanced topics are built. Key concepts such as routing, switching, server operating systems, email systems, IP Telephony, wireless and virtualization will be explored in detail.

Information systems vary significantly between industry verticals, service providers, mobile data, consumer and business applications. You will investigate the inner workings of each of these in some detail during your Network Engineering degree journey. Contemporary topics such as IT mobilization, virtualization, cloud computing, IP telephony and datacenter design are some of the new and exciting degree focus areas. Students will be versed in the proper application of information systems and the services they provide. Graduates will demonstrate a mastery of network architecture and be fluent in systems administration. This degree will prepare you with the skills required to become a successful network engineer, systems engineer, or network or systems administrator.

NETWORK ENGINEERING DEGREE OBJECTIVES
1. Translate physical and organizational needs into network design(s) that encompass logic and infrastructure.
2. Implement, support, and evaluate routed and switched IP wired and wireless network infrastructure that reflects networking concepts and industry best practices.
3. Implement, support and evaluate network systems and services such as active directory, email, DNS, servers, clients and data storage that are consistent with information systems concepts and industry best practices.
4. Produce visualizations and documentation related to network services.
5. Select and architect the most appropriate network, information systems, and technologies to meet the requirements of specific projects and communicate these decisions clearly in written and oral forms.
6. Implement, support and evaluate contemporary IP network-based communications, collaboration, virtualization and mobile systems services.

NETWORK ENGINEERING DEGREE COURSES
Courses in bold text are required for a Bachelor of Science in Network Engineering. Courses with an asterisk (*) are required for an Associate of Science in Network Engineering.

FOUNDATIONAL COURSES
- CIS210 Linux I
- NTS201* Security Essentials
- NTW102* Foundations of Network Engineering
- NTW214 Network Engineering Hardware
- NTW216* Foundations of Systems Administration
- NTW275 Network Infrastructure Design I
- NTW385 Managing Enterprise Networks

SKILLS DEVELOPMENT COURSES
- CSC211 Introduction to Databases
- NTS370 Shell Scripting for Hackers
- NTW245 Applied Mobile Computing and Cloud Collaboration Technologies
- NTW250 Scripting for System Administrators
- NTW270 Router and Switch Configuration and Administration
- NTW280 Virtualization System Technologies and Administration
- NTW320 Directory Services Design and Administration
- NTW342 Unix/Linux Systems Administration
- NTW375 Network Infrastructure Design II

SYNTHESIS COURSES
- NTW428 The Business of Technology
- NTW435 Small Business Network Design
- NTW440 Business Continuity/Disaster Recovery
- NTW455 Modern Data Center and Cloud Computing Design and Services

JOB TITLES
The Department of Education asks universities to associate their programs with relevant Classification of Instructional Programs (CIP) codes and specific Standard Occupational Classification (SOC) codes so that potential students can look at general occupations that would associate with the program. The CIP code and associated SOC codes and titles are supplied below for this program.

- 11-3021 Computer and Information Systems Managers
- 15-1011 Computer and Information Systems Scientists, Research
- 15-1032 Computer Software Engineers, Systems Software
- 15-1071 Network and Computer Systems Administrators
- 15-1099 Computer Specialists, All other
- 25-1021 Computer Science Teachers, Postsecondary

*To retrieve a summary report from ONet please visit www.onetonline.org and enter the SOC code.
NETWORK SECURITY

A network security specialist is a professional who focuses on ensuring information confidentiality, integrity and availability. This includes the design of information assurance programs, policies, procedures and architecture utilizing the concepts of security by design. Network security utilizes proactive techniques, including defense-in-depth and layered security, to mitigate or eliminate vulnerabilities in information systems and to protect against potential exploitation. Professionals in this career path may be highly technical and practice active (and sometimes aggressive) technical security methodologies to test and verify security implementations at various levels within an organization.

Security professionals possess intimate knowledge of technical business critical components. They also provide analysis and assessment of the security risks and requirements of those information systems while still developing non-technical skills such as teamwork, troubleshooting, problem solving, documentation and interpersonal communication. The Network Security degree reflects the application of theory and is aligned with industry standards and guidelines. It provides students with the opportunity to synthesize and apply the vital skills and knowledge necessary to succeed in the workforce.

NETWORK SECURITY DEGREE OBJECTIVES

1. Create a network infrastructure design communications document that includes identified hardware components, connections to outside world, identified physical layer connectivity (media) and addressing.
2. Install, configure and test security hardware and software tools with supporting documentation such as port scanners, vulnerability detection systems, intrusion detection systems, firewalls, system hardening, anti-virus tools, patch management, auditing and assessment.
3. Construct, implement and document a script or a program to automate a security-related process or other tasks such as installation, administration, management, mapping resources, logon scripts, patch management, updates, auditing, analysis and assessment.
4. Create a policy or procedure that addresses events such as: a disaster recovery plan, a business continuity plan, an incident response policy, an acceptable usage document, an information security policy, a physical security policy, assessments or troubleshooting procedures.
5. Develop a research report or implementation plan concerning legal and ethical best practices and mandated requirements that pertain to information security.
6. Research, document, test and evaluate several current industry information security based threats, risks, malicious activities, covert methodology, encryption technologies, mitigation techniques or unconventional tactics to prevent loss of sensitive information and data confidentiality, integrity and availability.

NETWORK SECURITY DEGREE COURSES

Courses in bold text are required for a Bachelor of Science in Network Security. Courses with an asterisk (*) are required for an Associate of Science in Network Security.

FOUNDATIONAL COURSES

- CFR101 Computer Forensic Essentials
- NTS201* Security Essentials
- NTS310 Social Engineering
- NTS405 Incident Response
- NTS426 Reverse Engineering
- NTW102* Foundations of Network Engineering
- NTW214 Network Engineering Hardware
- NTW216* Foundations of Systems Administration

SKILLS DEVELOPMENT COURSES

- NTS235 Security Applications
- NTS330 Applied Exploits and Hacking
- NTS350 Network Security Monitoring
- NTS370 Shell Scripting for Hackers
- NTS442 Collegiate Cyber Defense Competition
- NTS465 Security Evaluation and Assessment Methodology
- NTW245 Applied Mobile Computing and Cloud Collaboration Technologies

SYNTHESIS COURSES

- NTS325 Exploit Development
- NTS415 Network Defense and Countermeasures
- NTS435 International and Federal INFOSEC Standards and Regulations
- NTS445 Incident Response and Management
- NTW440 Business Continuity/Disaster Recovery

RECOMMENDED ELECTIVES

- CFR105 File Systems and Structures
- CFR230 Investigative Techniques
- CIS210 Linux I
- MAT220 Statistics
 - Level I programming course
 - Level II programming course

NSA-CERTIFIED COURSEWARE

The Information Assurance (IA)/Cyber Defense (CD) Evaluation certifies that UAT meets all of the requirements of the set knowledge units established by the NSA/ DHS National Information Assurance Education Training Program. The National IA Education and Training Program (NIETP) operates under national authority as the national manager for IA education and training relating to national security systems. Its programs assure the very finest preparation of professionals entrusted with securing our critical information. UAT meets the national training and education standards for the duties and responsibilities of Information Systems Security Professional, Senior Systems Managers, System Administrators and Information Systems Security Officers. The following are the courses students must take if they decide to pursue this designation:

- NTS201 Security Essentials
- MAT220 Statistics
- NTS415 Network Defense and Countermeasures
- NTS435 International and Federal INFOSEC Standards and Regulations
- NTW216 Foundations of System Administration
- NTS370 Shell Scripting for Hackers
- NTW270 Network Routing & Switching
- NTS330 Applied Exploits and Switching
ROBOTICS AND EMBEDDED SYSTEMS

The world we interact in everyday and the technology that we utilize are built upon the foundation of embedded systems. The Robotics and Embedded Systems degree provides students the engineering foundation for the design, implementation and analysis of embedded systems, with an emphasis in autonomous robotic systems. Building upon the foundation of software engineering, a degree in Robotics and Embedded Systems can span mechanical design, controls, electronics, digital logic design, embedded programming, machine vision, and adaptive algorithm development and design of autonomous robotic systems.

ROBOTICS AND EMBEDDED SYSTEMS DEGREE OBJECTIVES

1. Design and complete robotic and embedded systems solutions that apply to real-world situations and challenges.
2. Implement a simple microprocessor using digital logic design.
3. Demonstrate embedded system design skills, including, but not limited to, microcontroller selection, schematic design, printed circuit board layout, design for electromagnetic compatibility and design for manufacturing.
4. Apply knowledge of transducers, actuators and simultaneous hardware and software development in the design of an embedded system.
5. Design and analyze real-time embedded systems, including advanced digital logic design, signal processing and high-speed digital systems.
6. Implement and evaluate algorithms and methods enabling autonomy in a mobile robot.

ROBOTICS AND EMBEDDED SYSTEMS DEGREE COURSES

Courses in bold text are required for a Bachelor of Science in Open Source Technologies. Courses with an asterisk (*) are required for an Associate of Science in Open Source Technologies.

FOUNDATIONAL COURSES

CSC102* Introduction to Programming
CSC215* C/C++ Programming I
RBT131* Digital Logic Basic Processor Design
RBT205 Mechanics and Materials

SKILLS DEVELOPMENT COURSES

CSC211 Introduction to Databases
CSC275* C++ Programming II
CSC382 Data Structures and Algorithms
RBT173* Introduction to Microcontrollers

RBT211 Arduino Embedded Programming
RBT231 Autonomous Aerial Vehicles

SYNTHESIS COURSES

RBT337 Digital Vision and Sensor Processing
RBT347 Robot Navigation
RBT353 Robotics Competition
RBT389 Machine Learning
RBT421 Robotics Project
RBT479 Mechatronics

RECOMMENDED ELECTIVES

CSC318 Software Engineering Principles
CSC360 Artificial Life
CSC370 Artificial Intelligence

JOB TITLES

The Department of Education asks universities to associate their programs with relevant Classification of Instructional Programs (CIP) codes and specific Standard Occupational Classification (SOC) codes so that potential students can look at general occupations that would associate with the program. The CIP code and associated SOC codes and titles are supplied below for this program.

11.3021 Computer and Information Systems Managers
15-1011 Computer and Information Scientists, Research
15-1051 Computer Systems Analysts
15-1061 Database Administrators
15-1071 Network and Computer Systems Administrators
15-1081 Network Systems and Data Communications Analysts
15-1099 Computer Specialists, All other
25-1021 Computer Science Teachers, Postsecondary

*To retrieve a summary report from ONet please visit www.onetonline.org and enter the SOC code.
TECHNOLOGY FORENSICS

A technology forensics specialist is an Information Technology professional who supports the military, corporate, law enforcement and legal communities in the investigation and analysis of digital data. Students in the Technology Forensics degree will learn methods to obtain and document digital information, determine how information was compromised, trace attribution of malicious code and digital artifacts, and reverse engineer data in order to develop mitigations and countermeasures. Topics of study may include methods for discovering data in computers, networks and hand-held devices; recovering deleted, encrypted, corrupted or hidden information; the proper handling of evidence in accordance with laws and regulations; advanced malware detection; reverse engineering; and investigation of malicious code from a variety of sources including both common threat sources and the Advanced Persistent Threat (APT).

A technology forensics specialist is a role that will require the knowledge of systems and investigative techniques in order to impartially produce electronic evidence; develop attribution links; and counter advanced tactics, techniques, and protocols (TTP) of the adversary so that valuable data may be found in complex systems. Graduates from the program will have both the technical skills for recovering evidence and the presentation skills to provide both detailed technical and summary data to interested parties. This may include studies in the areas of electronic discovery, deposition and litigation or in corporate personnel processes. Above all, this program will focus on learning the highly technical and cutting-edge technologies affecting IT systems today and tomorrow. This program will prepare students to anticipate new and emerging technologies so they can be successful within the rapidly evolving computer forensic environment and the increasingly complex threat landscape. This program provides students with the opportunity to synthesize and apply the vital skills and knowledge necessary to not only succeed in the workforce but to have a highly desirable and technical education setting them apart from traditional digital forensics programs. Instruction will lead students into hands-on and real-world situations, where they will gain invaluable experience working with actual systems, software and networks. Further setting this program apart is the ability of students to work with the actual tools utilized by industry professionals and real-world malware in a controlled teaching environment.

TECHNOLOGY FORENSICS DEGREE OBJECTIVES

1. Articulate the complexity of and apply thinking skills to how the network and application infrastructure affects technology forensics investigations and incident response procedures.
2. Identify and apply in a forensics context the various topologies, standards, technologies and protocols employed in computer systems, including file system formats and their attributes.
3. Evaluate, select, and deploy computer forensic measures for the response, mitigation and analysis of a security incident pertaining to digital artifacts and how information was compromised.
4. Analyze and evaluate the current investigative and legal aspects of information and computer forensics including electronic discovery, deposition, litigation and corporate personnel processes.
5. Evaluate and execute the strategies, methodologies, technique, and state-of-the-art forensics tools for the preservation of digital evidence on computer systems, network systems and other electronic devices.
6. Create tracking processes to follow the trail of electronic evidence through digital systems, including documentation, formal reporting and presentation.

TECHNOLOGY FORENSICS DEGREE COURSES

Courses in bold text are required for a Bachelor of Science in Technology Forensics. Courses with an asterisk (*) are required for an Associate of Science in Technology Forensics.

FOUNDATIONAL COURSES

CFR101* Computer Forensic Essentials
CFR105* File Systems and Structures
CIS210 Linux I
NTS201 Security Essentials
NTW102 Foundations of Network Engineering
NTW214 Network Engineering Hardware
NTW216* Foundations of Systems Administration

SKILLS DEVELOPMENT COURSES

CFR225 Operating System Forensics
CFR227 Malware Detection and Analysis
CFR230 Investigative Techniques
CFR235 Mobile Device Forensics
CFR315 Video Forensics
NTS330 Applied Exploits and Hacking
NTS350 Network Security Monitoring
NTS370 Shell Scripting for Hackers

SYNTHESIS COURSES

CFR410 Network Forensics
CFR420 Advanced Forensics
CFR470 Corporate and Business Issues in Digital Forensics
NTS415 Network Defense and Countermeasures
NTS435 International and Federal INFOSEC Standards and Regulations
NTS445 Incident Response and Management

RECOMMENDED ELECTIVES

MAT220 Statistics

Level I Programming course

JOB TITLES

The Department of Education asks universities to associate their programs with relevant Classification of Instructional Programs (CIP) codes and specific Standard Occupational Classification (SOC) codes so that potential students can look at general occupations that would associate with the program. The CIP code and associated SOC codes and titles are supplied below for this program.

11-3021 Computer and Information Systems Managers
15-1011 Computer and Information Scientists, Research
15-1051 Computer Systems Analysts
15-1061 Database Administrators
15-1071 Network and Computer Systems Administrators
15-1081 Network Systems and Data Communications Analysts
15-1099 Computer Specialists, All other
25-1021 Computer Science Teachers, Postsecondary

*To retrieve a summary report from O*Net please visit www.onetonline.org and enter the SOC code.
TECHNOLOGY STUDIES

The Technology Studies program draws from a foundation designed to guide students through key aspects of the history and application of technology in the context of entrepreneurship, management and innovation. Technology Studies students gain competitive lifelong skills in strategic thinking, information analysis, presentation and modern marketing. Students gain literacy in a variety of technologies in social contexts, to scan for and report on technological change, and to evaluate disruptive and emerging technologies with respect to often-conflicting values, agendas and policy proposals.

Students are challenged to find their own creative visions with respect to technological innovation, management, marketing and entrepreneurship. Many paths are possible through this degree resulting in professionals capable of building strategic, entrepreneurial, policy and/or foresight competencies per the student’s preference. In turn, the degree is a foundation for a wide variety of careers, including marketing, management and entrepreneurial positions.

TECHNOLOGY STUDIES DEGREE OBJECTIVES

1. Identify and articulate historical, ethical, cultural, economic, business, military and political forces and consequences of technological development upon society.
2. Evaluate the uses and effects of technology in 21st-century civilization, including the social and economic opportunities and risks of disruptive technologies, and ethical and values-based frameworks for technology assessment and application.
3. Develop fluency in technology criticism and commentary, and familiarity with the historical settings of major technology figures and movements.
4. Develop an ability to report on and analyze creative and entrepreneurial processes of technological innovation, and conservative and political processes of technological sustainability in society.
5. Articulate the influence of new media and the Internet on society, and the ways information and communication technologies interact with professions such as education, medicine, business, law, environmental protection and remediation, nonprofit work, governance and the sciences.
6. Forecast the potential impacts of nascent and emerging technologies in ways that benefit organizations, governments and individuals.

TECHNOLOGY STUDIES DEGREE COURSES

Courses in bold text are required for a Bachelor of Science in Technology Studies. Courses with an asterisk (*) are required for an Associate of Science in Technology Studies.

FOUNDATIONAL COURSES

(One TCH course required)

- CIS120 Web and Social Media Technologies
- ENT200 Introduction to Business and Entrepreneurship
- MGT102 Management in a Technology Environment
- TCH220 Military Technology
- TCH230 Innovation Frameworks
- TCH250 Networked Society

SKILLS DEVELOPMENT COURSES

- ENT305 Entrepreneurial Operations
- MGT324 Managing Change and Innovation
- MKT250 Online Marketing Environments
- TCH200 Product Development

SYNTHESIS COURSES

- ENT405 Business Planning for Entrepreneurs
- MGT425 Trends in Business Technologies
- MKT320 New Media Communication and Marketing
- TCH425 Politics, Power and Technology
- TCH451 Contemporary Issues in Technology
- TCH490 Forecasting Emergent Technologies
- TCH491 New Technologies: Innovation, Production and the Market

JOB TITLES

The Department of Education asks universities to associate their programs with relevant Classification of Instructional Programs (CIP) codes and specific Standard Occupational Classification (SOC) codes so that potential students can look at general occupations that would associate with the program. The CIP code and associated SOC codes and titles are supplied below for this program.

- 13-1111 Management Analysts
- 11-1021 General and Operations Managers
- 25-1011 Business Teachers, Postsecondary

*To retrieve a summary report from ONet please visit www.onetonline.org and enter the SOC code.

WEB DESIGN

The Bachelor of Science in Web Design combines the critical elements of design, development and marketing to create competitive web professionals. Students in the program will explore topics in web design from aesthetic principles that include 2D design, graphics, typography and color. Building from this base, students will use current tools to design, develop and deploy fully functioning web presences. Additionally, students will gain experience applying new marketing techniques and strategies to optimize web presences in both mobile and traditional modes. Students will research and explore social media strategies and create web experiences designed to persuade the end user. Graduates from the Bachelor’s program in Web Design will be prepared for careers as UI designers, web analysts, user experience designers, information architects, digital marketing specialists and others.
WEB DESIGN DEGREE OBJECTIVES
1. Employ current web development tools to design, develop and deploy fully functioning websites that operate across multiple browsers and platforms.
2. Design effective web experiences that apply concepts of user interaction within the organization and presentation of information architecture.
3. Effectively apply content optimization techniques with respect to keywords, semantics, web copyrighting, graphics and search metrics.
4. Demonstrate the ability to work within a studio production pipeline to create and revise web and social media experiences that meet client timeline, design and quality requirements.
5. Apply aesthetic principles to create a professional web presence that addresses target audiences while matching design trends and client requirements.
6. Implement a social media strategies that effectively promote and drive web traffic to intended targets.

WEB DESIGN DEGREE COURSES
Courses in bold text are required for a Bachelor of Science in Web Design. Courses with an asterisk (*) are required for an Associate of Science in Web Design.

FOUNDATIONAL COURSES
ART103 Digital Asset Creation
ART112 Graphic Design Foundational Principles
CIS100* Beginning Web Design
CIS120* Web and Social Media Technologies
CSC102* Introduction to Programming
CSC203 Java Programming I
HCI101 Introduction to Human Computer Interaction
HCI102 Human Factors

SKILLS DEVELOPMENT COURSES
ART209 Typography and Layout Design
CIS240* Building Dynamic Websites I
CSC330 Mobile Platform Software Development
HCI250 User Experience Design and Testing
MKT250* Online Marketing Environments
MTM213 2D Vector Animation (Flash)
MTM235 Digital Illustration (Illustrator)
MTM307 Advanced Photoshop

SYNTHESIS COURSES
CIS340 Building Dynamic Websites II
CIS430 Best Practices in Web Production
MKT330 SEO and Applied Online Marketing
MTM330 Production Studio I
MTM430 Production Studio II

JOB TITLES
The Department of Education asks universities to associate their programs with relevant Classification of Instructional Programs (CIP) codes and specific Standard Occupational Classification (SOC) codes so that potential students can look at general occupations that would associate with the program. The CIP code and associated SOC codes and titles are supplied below for this program.

15-1021 Computer Programmers
27-1014 Multi-Media Artists and Animators
27-1024 Graphic Designers

*To retrieve a summary report from ONet please visit www.onetonline.org and enter the SOC code.
Program Information

<table>
<thead>
<tr>
<th>CIP Code</th>
<th>Programs Included</th>
<th>Degree Level</th>
<th>% Completed On Time</th>
<th>Median Federal Loans</th>
<th>Median Private Loans</th>
<th>Median Institutional Debt</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0105</td>
<td>Digital Video</td>
<td>Associate</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>10.0105</td>
<td>Digital Video</td>
<td>Bachelor</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>11.0101</td>
<td>Business Technology</td>
<td>Associate</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>11.0101</td>
<td>Network Security</td>
<td>Bachelor</td>
<td>84%</td>
<td>$26,792</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>11.0201</td>
<td>Advancing Computer Science</td>
<td>Associate</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>11.0201</td>
<td>Artificial Life Programming</td>
<td>Bachelor</td>
<td>67%</td>
<td>$30,320</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>11.0401</td>
<td>Network Engineering</td>
<td>Associate</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>11.0401</td>
<td>Network Engineering</td>
<td>Bachelor</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>11.0801</td>
<td>Digital Media</td>
<td>Associate</td>
<td>30%</td>
<td>$13,212</td>
<td>$0</td>
<td>$860</td>
</tr>
<tr>
<td>11.0801</td>
<td>Game Art and Animation</td>
<td>Bachelor</td>
<td>55%</td>
<td>$28,871</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>50.0404</td>
<td>Digital Maker and Fabrication</td>
<td>Associate</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>50.0404</td>
<td>Digital Maker and Fabrication</td>
<td>Bachelor</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>52.0101</td>
<td>Technology Studies</td>
<td>Associate</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>52.0101</td>
<td>Technology Studies</td>
<td>Bachelor</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Data represents students completing their programs during the 2013-2014 award year.

*Not to be disclosed due to low volume (under 10) of graduates for privacy.

**Included in CIP (Classification of Instructional Programs) Code but no graduates yet reflected in reported data period.
UNDERGRADUATE FACULTY

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree(s)</th>
</tr>
</thead>
</table>
| Diane Barrett | BAS, Remington College—Operations Management
 MS, Capella University—Information Security
 PhD, Northcentral University—Computer and Information Security |
| Maureen Beam | BA, Northern Arizona University—Interdisciplinary Studies
 MA, Northern Arizona University—English |
| Craig Belanger | BA, University of Arizona—Creative Writing
 MS, University of Advancing Technology—Technology
 MA, Northern Arizona University—Literature |
| Dave Bolman | BS, Arizona State University—Computer Graphics
 MT, Arizona State University—Computer Graphics
 PhD, Northcentral University—Management of Engineering and Technology |
| Sharon Bolman | BS, Arizona State University—Management
 MA, Arizona State University—Fine Arts, Theater Management |
| Jaleila Brumand | BS, Arizona State University—Geography
 BS, Arizona State University—Sustainability
 MS, Lancaster University (England)—Energy and the Environment |
| Bradley Bush | BA, Utah State University—International Studies
 MS, Utah State University—Mathematics
 MA, The Johns Hopkins—International Relations |
| Stephen Campbell | BS, University of Advancing Technology—CAAD
 MAED, American InterContinental University—Education |
| Derric Clark | BA, University of Advancing Technology—Virtual Reality, Animation Production
 MS, Western Governors University—Learning and Technology |
| Jill Coddington | BS, University of Colorado—Applied Mathematics
 MBA, University of Phoenix—Business
 MS, Regis University—Software Engineering
 PhD, The Union Institute—Mathematics |
| Paul DeNigris | BA, State University of New York—Media Study, Filmmaking
 MFA, National University—Digital Cinema |
| Nathan Eskue | BS, University of Arizona—Management Information Systems, Operations Management, Marketing
 MBA, University of Arizona |
| Mark Fedasiuk | BSEE, Rutgers University—Electrical and Computer Engineering
 MS, University of Advancing Technology—Technology Leadership |
| James Gordon | BS, University of Washington—Computer Software Systems
 MS, University of Washington—Computer Software Systems |
Mathew Henry
BS, Arizona State University—Psychology

Albert Kelly
BS, Embry Riddle University—Professional Aeronautics
MCIS, University of Phoenix—Computer Information Services

Matthew Marquit
BA, Art Institute of Phoenix—Game Art and Design

Greg Miles
BS, University of Cincinnati—Engineering
MS, Central Michigan University—Engineering Management
PhD, Kennedy Western University—Engineering Management

Spencer Nelson
BA, Arizona State University—Design Studies
MID, Arizona State University—Industrial Design

Steven Osburn
BSE, Arizona State University—Computer Systems Engineering
MSE, Arizona State University—Engineering Science

Abigail Pfeiffer
AA, Heartland Community College—Arts and Science
BA, Northern Arizona University—Humanities
MA, Norwich University—History

Jorge Portillo
BA, Art Institute of Phoenix—Media Arts and Animation

Ben Reichert
BA, University of Wisconsin-Madison—International Relations, Political Science, German
MA, University of Kent—International Relations

Gavin Regnaert
BA, Arizona State University—Japanese
MA, Arizona State University—East Asian Languages and Civilizations

Russ Rogers
BS, University of Maryland—Computer Science
MS, University of Maryland—Information Resource Management

Scott Swenka
BS, American Intercontinental University—Information Technology
MS, University of Dallas—Information Assurance

Lynn Understiller
BS, University of Advancing Technology—Game Art and Animation

Natasha Vita-More
BFA, Memphis State University—Media Art
MS, University of Houston—Studies of the Future
PhD, University of Plymouth—Media Design and Technology

Ellen Wolterbeek
BA, Regis College—Communications
MA, Arizona State University—Humanities
PhD, Arizona State University—Curriculum and Instruction
UNIVERSITY AND ADMISSIONS POLICIES

UNIVERSITY POLICIES

The University recognizes that all policies, procedures and programs are dynamic. Policies in this catalog represent the University’s approved student policies. University of Advancing Technology makes every effort to be consistent in its policies, procedures, documents and actions. The policies outlined in this catalog and in the student handbook supersede policies listed in any previous catalog or student handbook. In any case where conflicting statements occur between the official University catalog and another official publication, such as a previous year’s catalog, the catalog statement in the most recent version will take precedence. The only exception to this rule is the publication of a special supplement or addendum to the catalog. The electronic version of the catalog at uat.edu/Catalog and on the University’s Intranet incorporates the most recent supplement or catalog addendum within the body of the electronic catalog.

For each student entering a program at the University, graduation requirements are determined by the catalog under which the student enrolled. Policies governing the University and its student population are published in the catalog in its printed and electronic versions.

ADMISSION POLICIES

All UAT applicants are strongly encouraged to complete the application/enrollment process well in advance of class start dates.

NONDISCRIMINATION

The University of Advancing Technology is committed to providing equal opportunity to its students and employees, and to eliminating discrimination when it occurs. In furtherance of this commitment, the University of Advancing Technology strictly prohibits discrimination or harassment on the basis of race, color, religion, religious creed, genetic information, sex, gender identity, sexual orientation, age, national origin, ancestry, veteran status or disability status.

The University of Advancing Technology Title IX Grievance policy articulates how the University will respond to reported allegations of sexual harassment involving students, including sexual assault, and provides a consolidated statement of the rights and responsibilities under University policies and Title IX, as amended by the Violence Against Women Reauthorization Act of 2013. The policy describes how areas within the University will coordinate the provision of interim remedies and the prompt and effective investigation of allegations of Prohibited Offenses.

This policy applies to all members of the University community, including students, employees, faculty, staff and groups using the University facilities. It further applies to on- or off-campus behavior involving students. The University does not discriminate on the basis of sex in its educational programs and activities. (Implementing Title IX of the Education Amendments of 1972, 20 U.S.C. §§ 1681 et seq.)

Questions regarding Title IX may be referred to the Title IX Coordinators:

Dana Frasca and Martina Gizova
University of Advancing Technology
2625 W. Baseline Road Tempe, AZ 85283,
TitleIX@uat.edu
480-351-7879

The University of Advancing Technology Title IX Grievance policy articulates how the University will respond to reported allegations of sexual harassment involving students, including sexual assault, and provides a consolidated statement of the rights and responsibilities under University policies and Title IX, as amended by the Violence Against Women Reauthorization Act of 2013. The policy describes how areas within the University will coordinate the provision of interim remedies and the prompt and effective investigation of allegations of Prohibited Offenses.
UNDERGRADUATE ADMISSIONS REQUIREMENTS—US CITIZENS

University of Advancing Technology strives to admit students who embody our passion for technology, are a cultural match to our University, demonstrate adequate academic achievement, and have a dedication to lifelong learning. All undergraduate applicants are evaluated based on these criteria: academic history and achievements, personal expression, desire to attend UAT, how they might fit within UAT’s geek-friendly culture, passion and aptitude for technology, and the supportiveness of applicant’s network of family, friends and peers to achieve their educational goals (for UAT-Online applicants, employer support is also evaluated).

All applicants are required to have a high school diploma or equivalent to begin classes at UAT.

All applicants are encouraged to submit high school transcripts, ACT and/or SAT, Advanced Placement scores and college transcripts so that UAT’s Office of Admissions may thoroughly review the applicant’s academic history.

HOME SCHOoled STUDENTS

University of Advancing Technology welcomes students from all types of educational backgrounds and encourages home schooled students to apply. Due to the diverse nature of home school requirements from state to state, UAT requires the following materials in order to evaluate a student’s academic history for acceptance:

> Transcripts from a nationally recognized and accredited home school program

OR

> Detailed home school transcripts (course titles, brief description of each course content, a grade or performance assessment for each course, details on duration of study, and expected graduation date) and a second academic indicator such as the SAT, ACT, GED, or College GPA (Where 12 or more credits were completed at a single institution)

Please keep in mind that in order to attend at the University, applicants need to demonstrate completion of the equivalent of high school. Home schooled students need to submit documents indicating that they’ve followed the regulations determined by their State. Other forms of proof of high-school equivalency will be considered on a case-by-case basis, but should be approved in advance by contacting the Office of Admissions at admissions@uat.edu.

UNDERGRADUATE ADMISSIONS REQUIREMENTS—NON-US CITIZENS

If an applicant is not a citizen of a nation where English is the official language, then he or she must provide proof of English proficiency. Documentation of any of the following will show proficiency:

1. Test of English as a Foreign Language (TOEFL) with a score of:
 a. 550 or higher on paper-based test
 b. 79 or higher on Internet-based test
 c. 213 or higher on computer-based test

2. Successful completion of Level 112 from an ELS Center.

3. Attendance for one year at an accredited US college or university and completion of English 101 (or equivalent) with a grade of C or better.

5. Test of English for International Communication (TOEIC) score of 760.

6. Completion of a bachelor’s degree or equivalent from an institution where the medium of instruction was English.

One of the above must be satisfied for consideration. Proof of English proficiency is not required if English is the applicant’s native language.
All Official transcripts must be submitted with an English translation. In order to determine that a student has received the equivalent of a US High School Diploma or a US Bachelor’s degree, UAT may request that official transcripts be evaluated by Educational Credential Evaluators, Inc., P.O. Box 17499, Milwaukee, WI, 53217-0499, USA (www.ece.org) or another outside agency.

Federal law requires mandatory health insurance coverage for all international students studying in the United States. International students who will not be issued a visa through UAT and who already have health insurance coverage will need to show proof during their program of study. If a student does not have insurance coverage and would like to obtain it, they may contact the Registrar. Unless a student has provided evidence of insurance coverage, UAT will work with an outside insurance provider and will charge the student’s UAT account for provision of insurance during their studies.

INTERNATIONAL COURSE EXPECTATION
International students seeking to attend UAT on-campus indicate a desire during their visa application process to experience the interpersonal interactions that are found within on site learning. UAT values the benefits that international students receive when interacting directly with other students and faculty during their education. Therefore, our expectation is that these students attend all of their courses on-campus. International on-campus students may not take online courses.

INTERNATIONAL VISA
UAT takes no responsibility for managing international visas. This responsibility falls to the international students.

APPLICATION
An application for admission must be completed and submitted to the UAT Office of Admissions prior to consideration. Contact the UAT Office of Admissions for the necessary form or complete the online application at uat.edu/apply.

Steps to Apply for Acceptance:
1. Complete the application and send it to University of Advancing Technology, 2625 West Baseline Road, Tempe, AZ, 85283-1056, USA, fax it to (602) 383-8222 or submit it electronically through our website at uat.edu/apply.
2. To determine if applicants meet the requirements set forth by the University’s acceptance criteria, completed applications are forwarded to the Office of Acceptance.
3. Applicants are granted Acceptance, Conditional Acceptance, or applicants are denied.
4. Acceptance to the University does not guarantee admission. Please refer to admissions requirements.

Acceptance
Acceptance is awarded to high school applicants and have provided sufficient information for the Office of Acceptance or have submitted sufficient ACT or SAT test scores and whose records have been officially verified (i.e., receipt of official academic transcripts and/or official test scores when applicable).

Denied
Denied applicants did not meet the University’s acceptance requirements. Applicants are eligible to re-apply.

Admission
Prior to matriculating to UAT, a high school diploma from an accredited institution recognized by the US Department of Education, or equivalent must have been earned. In addition, all required enrollment forms must be completed and a deposit on file with the University.

THREE-DAY CANCELLATION POLICY
An applicant who provides written notice of cancellation within three days (excluding Saturday, Sunday and federal and state holidays) of signing an enrollment agreement is entitled to a refund of all monies paid. No later than 30 days of receiving the notice of cancellation, the school shall provide the 100% refund.

TRANSFER CREDIT FOR PREVIOUS EDUCATION
The University actively seeks to recognize college-level academic work completed by its enrolling students at Department of Education-recognized accredited institutions. All previous coursework must be completed prior to attending UAT to be considered for possible transfer credit. Transfer credit may be awarded for previous college-level courses that a student has successfully completed up to ninety (90) undergraduate credit hours towards a bachelor’s degree, thirty (30) undergraduate credit hours towards an associate’s degree and fifteen (15) graduate credit hours towards a master’s degree.

The following restrictions apply: A maximum of 90 credits may be transferred from any combination of two- and four-year institutions. Transfer credit will only be approved for courses that apply to a student’s program of study. Students must have attained a grade of C (2.0) or better in undergraduate coursework for credits to be awarded. Undergraduate coursework will be evaluated on an individual basis; credit for electives is limited but direct equivalents will be maximized. No credit will be awarded for any courses worth less than one credit hour or courses with sub-100-level course codes.
Previous academic coursework and test scores are evaluated by the University upon submittal of unofficial or official college transcripts. It is the student’s responsibility to request official transcripts to be sent to the Registrar. Students may use the College Transcript Request document, which can be downloaded in PDF form on the Intranet or requested from the Office of Admissions. Although unofficial transcripts may be used to generate a Transcript Credit Evaluation, official transcripts from all previously attended institutions from which credit was awarded must be on file with the Registrar prior to the end of the student’s first semester at UAT. Students will be notified via email of the results of their evaluations. Credits will not be made official until the student has enrolled. A one-time transfer credit fee of $100.00 will be charged to the student’s account. Students who switch to another degree program or re-enroll may have a re-evaluation of previously awarded transfer credits if the credits were earned prior to the student’s original start date. Please refer to the Re-Entry and Degree Change sections for more information.

Grade point averages will be computed based only on grades received for courses completed at University of Advancing Technology. Transfer credits will be awarded at the discretion of the University.

Veterans Administration Transfer Credits
Every veteran who applies for educational benefits through the University must provide official copies of academic transcripts from all previously attended institutions for evaluation. Veterans must follow the guidelines for applying for transfer credit outlined in the Transfer Credit for Previous Education section. Enrollment certification will not be completed and sent to the US Veterans Administration (VA) until this step is accomplished. The VA has ruled that all prior education at the post-secondary level must be evaluated by the University and transfer credit granted for applicable courses. University of Advancing Technology will follow the regulations regarding the certification of veterans in compliance with the VA.

Other Transfer Credits
Transfer credit can be obtained from:
> Advanced Placement (AP) exams with a score of 3.0 or better
> International Baccalaureate (IB) exams with a score of 5 or better
> ACE-approved military coursework
> College Level Examination Program (CLEP) exams
> Defense Activity for Non-Traditional Education Support (DANTES) or DANTES Subject Standardized Tests (DSST) exams
> Most Microsoft Corp., Cisco Systems Inc and Computing Industry Technology Association (CompTIA) certifications

Transferring to Other Institutions
In order to transfer college credit to another institution, a student must submit an application to that institution and follow its guidelines. Each institution has its own rules and standards governing the transfer of credit; thus, University of Advancing Technology cannot make any assurances that any other institution will accept its credits or degrees.

START DATES
Resident students may begin their education at any of three start dates throughout the year. Undergraduate students may begin taking classes in Spring (January), Summer (May), or Fall (September).

COURSE CANCELLATION
Courses are occasionally canceled at the University for a variety of reasons including low or no enrollments, faculty availability or resource needs. If a course is canceled, academic advisement is provided to students on how to amend their program of study to meet academic goals. Although UAT will provide notifications of closures or time changes as far in advance of a course start date as possible, it is the student’s responsibility each semester to verify their course schedule in preparation for the first day of class.

MILITARY POLICY
University of Advancing Technology recognizes the service, dedication and sacrifices made by the men and women serving our nation in the United States armed forces.

As a military friendly university, UAT extends all courtesy and cooperation as US servicemen and women are deployed for duty. UAT Student Services and Financial Aid coordinators assist our US military students through the process of obtaining the time away from classes and options to resolve any account balance on a case-by-case basis.

RE-ENTRY
Withdrawn individuals wishing to return to the University may do so by re-applying for acceptance. Re-entry students (students who have previously withdrawn or been withdrawn from the University) are subject to meeting all admissions criteria prior to being accepted. Additionally, all re-entry applicants must have met Satisfactory Academic Progress at the time of their withdrawal from the University and must also be in good financial standing with the University to be considered for re-entry. Applicable admission fees are charged each time a student enrolls at the University. All initial transfer credit evaluations must be completed by the first semester of an applicant’s first enrollment at UAT. Any credits earned between enrollments may be submitted to the University for evaluation of transfer credit and will be awarded at the University’s discretion. All transcripts must be submitted for evaluation prior to re-entry in order to receive consideration of transfer credit.

Students choosing to re-enter, who have had more than 180-days pass since their last day of attendance at UAT, will be charged the published tuition rate at the time of their most recent enrollment agreement. Students choosing to re-enter on or before 180-days since their last day of attendance at UAT will be charged the tuition rate of their previous enrollment.
MANDATORY HOUSING POLICY
All first-year undergraduate students are required to live in the Residence Life Community during their first year at University of Advancing Technology.

There are limited exceptions to this policy (for example, if you are married or are living with parents or guardians within a designated mileage from campus). A student who wishes to reside outside of the Residence Life Community must submit this application to the University and furnish appropriate documentation or other written information supportive of the request 30 days prior to the semester the student wishes to commence residing outside the Residence Life Community.

A student should inquire in advance about requesting permission from the University for independent housing in order to avoid inconvenience for the student and the University.

Prior to entering into any type of rental or lease agreement, a student should secure a written authorization for independent housing.

UNIVERSITY SCHOLARSHIPS
University of Advancing Technology seeks to reward scholarships to on-campus, undergraduate students who have demonstrated achievement and potential for success. UAT students are accepted for admission based on a range of qualifications that express the student’s vision for the college experience, the value of technology innovation in the world and their desire to attend a geek-centric university. UAT’s comprehensive scholarship program is designed to reward new students who meet these standards and show successful academic performance.

All scholarship recipients must meet the full admission requirements and be enrolled for a program of study within University of Advancing Technology prior to the disbursement of scholarship funds. Scholarship awards and eligibility depend upon the particular scholarship the student is awarded. Living, transportation, books and supply expenses are the responsibility of the student. The award is applied to the overall tuition amount and is not a cash award. This award is not transferable to another university.

Announcement of scholarship awards will be in the form of letters to the applicant’s home address. Eligibility for each type of scholarship is outlined within the following information. Many UAT scholarships have associated deadlines for a) the submission of documentation supporting the award of the scholarship and b) enrollment following notification of a scholarship award.

ALMA MATER PRIDE SCHOLARSHIP
University of Advancing Technology is offering an Alma Mater Pride Scholarship to students recommended to the University through our alumni network.

Eligibility:
A UAT Alumnus, prior to a submission of an application, must recommend the applicant.

Award Amount:
$1,000 per semester for a maximum of eight (8) semesters. $8,000 scholarship maximum.

Terms and Conditions:
The recipient must stay continuously enrolled at the University, uphold any and all stipulations of the UAT Code of Conduct, and act with ethics above reproach. Recipients must meet satisfactory academic progress towards completion of UAT degree objectives to maintain scholarship eligibility. Progress will be monitored by UAT and the award may be revoked if the recipient is not meeting expectations and requirements outlined in the University catalog.

Renewal:
Scholarship recipients who meet award maintenance requirements will receive the scholarship for up to eight semesters for on-campus undergraduate programs.
CONTINUATION SCHOLARSHIP
University of Advancing Technology (UAT) is offering a scholarship to students electing to continue their education at UAT with the pursuit of a master’s degree.

Eligibility:
All UAT graduates who enroll to begin one of UAT’s master’s degree programs within one year of graduation.

Award Amount:
The student will receive a scholarship in the amount of their first graduate program three-credit course (this is based on the student’s current graduate tuition amount).

Terms and Conditions:
The award is not redeemable for cash. The scholarship can only be applied to tuition and will not apply to housing, meal plans or the Synchronic Resource fee.

Renewal:
This is a one-time award that will be applied to the students account.

DANCERS OF BALLET ARIZONA SCHOLARSHIP
A half-tuition scholarship to attend University of Advancing Technology will be awarded to dancers from Ballet Arizona. The relief effort provides retiring dancers an opportunity to pursue higher education outside of ballet.

Eligibility:
We are seeking current and retired Ballet Arizona dancers. Students who have retired from the company must begin classes on campus within one year of retiring and must meet all UAT acceptance requirements.

Award Amount:
The Dancers of Ballet Arizona Scholarship award amount is a half tuition scholarship to be disbursed evenly over eight consecutive semesters or four academic years, for a total amount of approximately $46,300.

Terms and Conditions:
The recipient(s) must stay continuously enrolled at the University, and abide by the University Code of Conduct and act with ethics above reproach. Recipients must meet satisfactory academic progress towards completion of UAT degree objectives to maintain scholarship eligibility. Progress will be monitored by UAT and the award may be revoked if recipient is not meeting expectations and requirements outlined in the university catalog. The recipient(s) may not receive this scholarship in addition to an Academic Scholarship.

Renewal:
Scholarship recipient(s) who meet award maintenance requirements will receive the scholarship for up to eight academic semesters.

DIGITAL VIDEO FILM FESTIVAL SCHOLARSHIP
A full-tuition scholarship to attend University of Advancing Technology’s award-winning Bachelor of Arts Digital Video program will be awarded to one deserving student filmmaker each year. In the case of a team production, up to four team members may split this award equally.

Eligibility:
We are seeking first-time, incoming, on-campus students looking to obtain a Bachelor of Arts Digital Video degree. Students must have submitted a qualifying film to an eligible category of the UAT DV Film Festival. Recipient(s) must enroll at the University within two months of the date on the award letter.

Award Amount:
The Digital Video Film Festival Scholarship award amount is a full tuition scholarship to be disbursed evenly over eight consecutive semesters or four academic years, for a total amount of approximately $84,000.

Terms and Conditions:
The recipient(s) must stay continuously enrolled at the University, and abide by the University Code of Conduct and act with ethics above reproach. Recipients must meet satisfactory academic progress towards completion of UAT degree objectives to maintain scholarship eligibility. Progress will be monitored by UAT and the award may be revoked if recipient is not meeting expectations and requirements outlined in the university catalog. The recipient(s) may not receive this scholarship in addition to an Academic and/or Thinking Scholarship.

Renewal:
Scholarship recipient(s) who meet award maintenance requirements will receive the scholarship for up to eight academic semesters.
MERIT SCHOLARSHIP
The University is seeking students who demonstrate both strong academic success, a commitment to technology, and a deep passion for learning and technology.

Award Amount:
Amounts vary and range from $500/per semester to $5,000/per semester and are determined at application.

Innovator Scholarship: up to $40,000
Futurist Scholarship: up to $32,000
Premier Thinker Scholarship: up to $24,000
Learning Scholarship: up to $12,000
UAT Experience Scholarship: up to $4,000

Terms and Conditions:
Students must successfully enroll in the University in accordance with all deadlines. Recipients must stay continually enrolled, uphold any and all stipulations of the UAT Code of Conduct, and act with ethics above reproach. Recipients must meet satisfactory academic progress towards completion of UAT degree objectives to maintain scholarship eligibility. Progress will be monitored by UAT and the award may be modified or revoked if the recipient changes degree program or is not meeting expectations and requirements outlined in the University catalog.

Renewal:
Scholarship recipient(s) who meet award maintenance requirements will receive the scholarship for up to eight academic semesters.

MURPHY’S ROBOTICS SCHOLARSHIP
The UAT Murphy Robotics Scholarship is awarded to active participants in the FIRST Robotics Competition, the FIRST Tech Challenge, the VEX Robotics Competition, the TSA-VEX Competition, or the BEST Robotics Competition for their academic success and continued participation in programs related to science, technology, engineering and mathematics. The mission of each organization clearly aligns with our mission, vision, and core values.

FIRST (For Inspiration and Recognition of Science and Technology) is an organization driven to engage students in science and technology through a mentor-based program that involves leadership, technology skills, engineering, mathematics and teamwork.

VEX is a Robotics Design System that sponsors competitions in order to inspire creativity and innovation in designing and building robots. The competition requires leadership, technology skills, engineering, mathematics, and teamwork.

BEST (Boosting Engineering Science and Technology) is an organization driven to engage students in science and technology through a sports-like competition that involves leadership, technology skills, engineering, mathematics and teamwork. The scholarship is for one $40,000 scholarship per Robotics team and is awarded to one student on the team who is participating in the FIRST Robotics Competition (divided as a $5,000 tuition scholarship each semester for eight semester).

Eligibility:
> Be a high school senior
> Be recommended by his/her adult sponsor of the student’s Robotics team
> High School CGPA of a 3.5 or higher

Award Amount:
$5,000 per semester for up to eight (8) semesters for a maximum total award amount of $40,000.

Terms and Conditions:
Eligible students must enroll at the University within one month of the date on the award letter in order to receive the scholarship. The recipient must stay continuously enrolled at the University, uphold any and all stipulations of the UAT Code of Conduct, and act with ethics above reproach. Recipients must meet satisfactory academic progress towards completion of UAT degree objectives. Progress will be monitored by UAT and the award may be revoked if the recipient is not meeting expectations and requirements outlined in the University catalog. This scholarship cannot be combined other Merit Scholarships.

Renewal:
Scholarship recipient(s) who meet award maintenance requirements will receive the scholarship for up to eight academic semesters.
UAT YELLOW RIBBON SCHOLARSHIP
As part of the Yellow Ribbon GI Education Enhancement Program, University of Advancing Technology will award scholarship funds to eligible on-campus and online undergraduate and graduate students.

Eligibility:
To be eligible for the UAT Yellow Ribbon Scholarship, students must be eligible for the maximum benefit rate under the Post-911 GI Bill (Based on service requirements). Therefore, students may be eligible if they:
> Served an aggregate period of active duty after September 10, 2001, of at least 36 months
> Were honorable discharged from active duty for a service-connected disability and served 30 continuous days after September 10, 2001
> Are a dependent eligible for Transfer of Entitlement under the Post-911 GI Bill based on a veteran’s service under the eligibility criteria listed above

Award Amount:
Award amount, a combination of UAT’s contribution and a matching contribution from the Veteran’s Administration, is determined on an annual basis every August.

FINANCIAL AID AND VETERANS’ ADMINISTRATION BENEFITS
The Office of Student Financial Aid is committed to helping students through the entire financial aid process and assisting students in developing a financial plan that best suits their family’s needs. To that end, the University participates in the federal Veterans Education Benefits program and the following federal Title IV student aid programs: Pell Grant, Supplemental Educational Opportunity Grant, Work Study, Stafford Loan (for students) and PLUS Loan (for parents). The University also works with private loan lenders to assist students in meeting their educational expenses.

Questions concerning financial assistance programs, consumer information and requests for financial aid forms may be addressed to the Office of Student Financial Aid by calling (480) 351-7857 or (800) 658-5744, or emailing FA@uat.edu. Financial aid forms and related information are also available at uat.edu/fa.

DISBURSEMENT OF TITLE IV FUNDS
In accordance with the Higher Education Act (HEA) as amended, any Title IV or HEA program funds received by UAT will be disbursed to the eligible student’s tuition account by the third business day following the receipt of funds. Should a student be deemed ineligible for said funds, those monies will be returned promptly to the source program or lender.

In accordance to U.S. Department of Education requirements, Title IV, HEA loan information for students and parents will be submitted to the National Student Loan Data System (NSLDS) which is accessible by guaranty agencies, lenders, and schools determined to be authorized users of the data system.

VETERANS’ CERTIFICATION OF ENROLLMENT POLICY
The University’s School Certifying Official will certify student Veterans’ attendance with the Veteran’s Administration (VA) every semester at the written request of the student Veteran through a Request of Benefits (ROB) form. This certification process is designed to satisfy the VA’s objective of paying benefits only to eligible student Veterans in an acceptable enrollment status.

OFFICIAL DOCUMENTS
All Title IV funding is determined upon receipt of official transcripts and documents.
TUITION POLICIES

TUITION FEES
UAT has a tuition lock to assist students and their families with the planning of their tuition investment. New students will establish their tuition rate at the time of their enrollment and will not be subject to any subsequent increases in tuition as long as they remain continuously enrolled at the University. Change of start date may forfeit tuition lock.

The rate of tuition for on-campus undergraduate students is $11,575. Refer to uat.edu/tuition for current tuition rates.

Tuition is subject to change at any time. Additional information regarding tuition rates may be found at uat.edu/tuition.

OTHER FEES
The non-refundable seat deposit to accompany the enrollment agreement for graduate and undergraduate programs:
> US Residents $250
> Non-US Residents $250

In addition to the non-refundable seat deposit, non-US Resident students enrolling as International students will also need to remit the following deposits:
> A non-refundable deposit towards insurance of $750
> A tuition deposit (See the Refund Policy for more details) of $1,000.

The transfer credit fee is $100. This is a one-time fee for all transcripts evaluated during the admissions process.

The Synchronic Resource Fee for on-campus students is $300 per semester, effective May 1, 2016.

Parking Permit fees for students choosing to park on-campus are $75 per semester for a car and $35 per semester for a motorcycle.

HOUSING FEES
The housing cost is $7,776 (private bath) or $6,984 (shared bath) for a one-year (12-month) license agreement. Visit uat.edu/housing for updated information.

The Residence Life housing deposit is $550 (with a guarantor), or $750 (without a guarantor) and covers the following costs:
> $400 security deposit with a guarantor or $600 without a guarantor (refundable)
> $150 administrative fee (non-refundable)

Please reference Mandatory Housing Policy.

STUDENT MEALS
Student Meal Plans effective September 2015:
> Bitbyte Plan: 150 meals per term (about 10 meals / week) will cost $1,650
> Gigabyte Plan: 180 meals per term (about 12 meals / week) with $300 in Cafe Credit included will cost $1,950
> Terabyte Plan: 210 meals per term (about 14 meals / week) with $300 in Cafe Credit included will cost $2,150
> Yottabyte Plan: Unlimited access with $300 in Cafe Credit included will cost $2,300

First year residents living in Founder’s Hall will be required to subscribe to at least one of these plans.

ESTIMATED PROGRAM COSTS
Based on 2016 pricing, subject to increases. Assumes 8-semester Bachelor’s degree and 4-semester Associate degree.

<table>
<thead>
<tr>
<th>ON-CAMPUS BACHELOR STUDENT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition</td>
<td>$92,600</td>
</tr>
<tr>
<td>Estimated Housing Costs</td>
<td>$18,624</td>
</tr>
<tr>
<td>Fees</td>
<td>$2,650</td>
</tr>
<tr>
<td>Meal Plan</td>
<td>Variable</td>
</tr>
<tr>
<td>10 meals per week per semester: $1,850</td>
<td></td>
</tr>
<tr>
<td>14 meals per week per semester: $2,150</td>
<td></td>
</tr>
<tr>
<td>Unlimited meals per week per semester: $2,300</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$128,674</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ON-CAMPUS ASSOCIATE STUDENT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition</td>
<td>$46,300</td>
</tr>
<tr>
<td>Estimated Housing Costs</td>
<td>$9,266</td>
</tr>
<tr>
<td>Fees</td>
<td>$1,450</td>
</tr>
<tr>
<td>Meal Plan</td>
<td>Variable</td>
</tr>
<tr>
<td>10 meals per week per semester: $1,850</td>
<td></td>
</tr>
<tr>
<td>14 meals per week per semester: $2,150</td>
<td></td>
</tr>
<tr>
<td>Unlimited meals per week per semester: $2,300</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$64,416</td>
</tr>
</tbody>
</table>

PAYMENT
Payment From US Residents
Arrangements for payment of tuition, housing, synchronic resources and fees must be made before the first day of class. For charges of tuition and fees not covered by Federal Title IV Student Financial Assistance, payment must be made to the Office of the Bursar no later than 10 calendar days after the start of the semester.

A student with a balance at the end of a semester may be subject to withdrawal. Payment can be made on the UAT Intranet by credit or debit card, by check, money order or by calling (480) 351-7857. Degrees, diplomas, certificates, and transcripts will be withheld until all tuition/fees are paid in full.

Payment From Non-US Residents
Arrangements for the non-refundable seat deposit of $250, non-refundable deposit of $750 towards the cost of insurance and the $1,000 refundable advanced tuition deposit are due by the 15th day of the month prior to the semester start date.

Arrangement for payment of all remaining balances for tuition, housing, synchronic resources and fees must be made before the first day of class. Students failing to do so are subject to the termination of their student I-20. Payment can be made on the UAT Intranet by credit or debit card, by check, money order, or by calling (480) 351-7857. Degrees, diplomas, certificates, and transcripts will be withheld until all tuition/fees are paid in full.
Military/Veteran Tuition Policy
In order to support its military/veteran students, University of Advancing Technology (UAT) allows Veteran students utilizing related federal benefits special consideration relating to tuition charges when a military student requests a leave of absence (LOA) or student initiated withdrawal. This consideration will eliminate, prorate or postpone their tuition according to VA money received.

Veterans are responsible for understanding their military education benefits and keeping track of their tuition and fees, UAT account balance and VA payments.

REFUND POLICY
Upon a student’s withdrawal from University of Advancing Technology, tuition is refunded according to the number of days attended after the start of classes. Students may not use drop/add to withdraw from school. Students must fill out withdrawal paperwork in order to withdraw from the University. The University withdrawal form is located on the Intranet, or students may make an appointment with Student Services to fill out this form.

Students withdrawing from school receive a refund as follows:

<table>
<thead>
<tr>
<th>Withdrawal Date After the Start</th>
<th>Tuition Refund</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 through 7 calendar days from the beginning of term</td>
<td>100%</td>
</tr>
<tr>
<td>8 through 13 calendar days from the beginning of term</td>
<td>86%</td>
</tr>
<tr>
<td>14 through 20 calendar days from the beginning of term</td>
<td>73%</td>
</tr>
<tr>
<td>21 through 26 calendar days from the beginning of term</td>
<td>60%</td>
</tr>
<tr>
<td>27 through 32 calendar days from the beginning of term</td>
<td>46%</td>
</tr>
<tr>
<td>33 through 38 calendar days from the beginning of term</td>
<td>33%</td>
</tr>
<tr>
<td>39 through 44 calendar days from the beginning of term</td>
<td>20%</td>
</tr>
<tr>
<td>45 through 49 calendar days from the beginning of term</td>
<td>6%</td>
</tr>
<tr>
<td>After the 49th calendar day from the beginning of term</td>
<td>No refund</td>
</tr>
</tbody>
</table>

The Withdrawal Date is defined by the withdrawal policy. All refunds are calculated on the basis of a fifteen (15) week semester regardless of individual course length or course start date. Additionally, students will be billed by the Office of the Bursar for any balance remaining after earned financial aid is applied to tuition charges.

RETURN OF TITLE IV FUNDS
Federal Student Aid (FSA) funds are awarded to a student under the assumption that the student will attend school for the entire period for which the assistance is awarded.

FSA regulations require schools to determine whether a student intends to return to classes or withdraw when a student is absent for 14 consecutive calendar days and return a student’s Title IV funds as soon as possible, but no later than 45 calendar days from its determination. A student’s withdrawal date, for the purposes of returning Title IV funds, is the last day of academic attendance as determined by the school from its attendance records.

When a student withdraws, the student may no longer be eligible for the full amount of FSA funds that the student was originally scheduled to receive. If a recipient of FSA grant or loan funds withdraws from the school after beginning attendance, the amount of FSA grant or loan assistance earned by the student must be determined. If the amount disbursed to the student is greater than the amount the student earned, unearned funds must be returned.

Up through the 60% point in each payment period, a pro-rata schedule is used to determine the amount of FSA funds the student has earned at the time of withdrawal. After the 60% point in the payment period, a student has earned 100% of the FSA funds he or she was scheduled to receive during the period. For a student who withdraws after the 60% point-in-time, there are no unearned funds.
<table>
<thead>
<tr>
<th>Year</th>
<th>Semester</th>
<th>Dates</th>
<th>Break Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>SPRING 2015 SEMESTER</td>
<td>January 12–May 1</td>
<td>March 7-15</td>
</tr>
<tr>
<td></td>
<td>SUMMER 2015 SEMESTER</td>
<td>May 11–August 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fall 2015 SEMESTER</td>
<td>September 8–December 18</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>SPRING 2016 SEMESTER</td>
<td>January 11–April 29</td>
<td>March 5–13</td>
</tr>
<tr>
<td></td>
<td>SUMMER 2016 SEMESTER</td>
<td>May 9–August 19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FALL 2016 SEMESTER</td>
<td>September 6–December 20</td>
<td></td>
</tr>
</tbody>
</table>

HOLIDAYS FOR 2015

- New Year’s Day: January 1
- Martin Luther King Day: January 19
- Presidents’ Day: February 16
- Memorial Day: May 25
- Labor Day: July 4
- Founder’s Day: September 7
- Columbus Day: September 23
- Veterans Day: October 12
- Thanksgiving: November 11
- Christmas: November 26–27
- December 25

HOLIDAYS FOR 2016

- New Year’s Day: January 1
- Martin Luther King Day: January 18
- Presidents’ Day: February 15
- Leap Year Day: February 29
- Memorial Day: May 30
- Independence Day: July 4
- Labor Day: September 5
- Founder’s Day: September 23
- Columbus Day: October 10
- Veterans Day: November 11
- Thanksgiving: November 24–25
- Christmas: December 25
2017

SPRING 2017 SEMESTER
Semester January 9–April 28
Spring Break March 4–12

SUMMER 2017 SEMESTER
Semester May 8–August 18

Fall 2017 SEMESTER
Semester September 5–December 19

HOLIDAYS FOR 2017
New Year’s Day January 1
Martin Luther King Day January 16
Presidents’ Day February 20
Memorial Day May 29
Independence Day July 4
Labor Day September 4
Founder’s Day September 22
Columbus Day October 9
Veterans Day November 10
Thanksgiving November 23–24
Christmas December 25

2018

SPRING 2018 SEMESTER
Semester January 8–April 27
Spring Break March 3–11

SUMMER 2018 SEMESTER
Semester May 7–August 17

FALL 2018 SEMESTER
Semester September 4–December 18

HOLIDAYS FOR 2018
New Year’s Day January 1
Martin Luther King Day January 15
Presidents’ Day February 19
Memorial Day May 28
Independence Day July 4
Labor Day September 3
Founder’s Day September 24
Columbus Day October 8
Veterans Day November 12
Thanksgiving November 22–23
Christmas December 25
INTRANET
UAT’s Intranet is the student’s online interface to University operations and student life. Students can access news stories about UAT, student journals and discussions, and academic processes, including checking grades and email, going to class and registering for classes. The Intranet can be found at https://intranet.known-universe.com/. Students are given access to the Intranet upon acceptance at UAT, and their access to the Intranet will continue for the life of their relationship with the University even after they have become alumni.

PLACEMENT TESTING
The University realizes that placement in the appropriate course level is a component that fosters student success. Placement testing is designed to ensure that students take classes that are an appropriate match to their ability level. Students may demonstrate mastery through an evaluation of previously earned credit in high school and collegiate-level coursework or by passing the designated placement exams.

Incoming students without evidence of English and/or math levels may be required to take designated exams to establish proper course level for registration. In addition to the aforementioned tests, there are additional placement tests available that will allow students to take higher-level classes by replacing the prerequisite course with a successfully completed placement test. Placement exams can only be attempted once.

Placement out of a course does not override past grades. Formal course credit is not awarded for placement.

REGISTRATION
Students may register for classes during any University-sponsored registration period for which they are eligible. Students are required to maintain full-time status at the University. Registration for a semester begins on week ten of the prior semester and closes at 5 p.m. MST on the last day of drop/add period.
DROP/ADD
Students may drop and/or add courses within the first five (5) business days of a semester in order to meet academic requirements and ensure successful completion of a program of study. A student who wishes to drop or add a course must use the registration tool located on the UAT Intranet to complete the request. Students who do not register by the end of the drop/add period will be withdrawn from the University. Additions to the semester load may not exceed the maximum course load allowed. A student may not use this process to register for less than full-time enrollment. If a course is dropped prior to the fifth class day, the course will be deleted from the student’s permanent record. Students may not drop all classes in order to withdraw from the University. Students wishing to withdraw from the University must follow the University’s withdrawal procedures. Tuition and refunds for withdrawing students are based on the withdrawal policy and not based within the drop/add policy.

INDIVIDUAL COURSE WITHDRAWAL
A student may withdraw from courses after the drop/add period is closed and through the end of week ten in the semester. Students must request a course withdrawal prior to 5 p.m. MST on the last day of week ten. Undergraduate on-campus students may not withdraw to less than 6.0 active credits within a semester.

REPEATED COURSES
With repeated courses, the University will use the highest grade achieved by the student in the computation of the grade point average. Both the original attempt and the repeated attempt’s grade will remain on the student transcript. The University will count a repeated course towards full-time enrollment status and certain funding sources when a student is repeating a previously passed course for the first time only (i.e., one repetition per course).
INCOMPLETE

A student who, for documented reasons beyond their control, has been unable to complete all work for a course(s) may be granted the grade of incomplete (I). A student must have completed at least 50% of the course materials in order to request an incomplete. Incomplete requests must be submitted no later than 5 p.m. MST on the last day of the semester in order to be considered. Incompletes may stay on a student’s academic record a maximum of five weeks, during which time the student may coordinate the submission of work designed to finalize the course with the instructor. Students can request additional information from Student Services. Incompletes not resolved by the end of five weeks will be reversed to the original computed grade.

CHANGING DEGREE PROGRAMS

The University understands that students may discover that the degree program they originally began may not truly address the student’s desire for lifetime career goals and future endeavors. Therefore, the University will allow students to change degrees.

The Degree Change Form, as well as academic advisement, will be provided by Student Services. Students may submit the Degree Change Form at any point during their program. However, depending on course availability, the effective date on the change may be aligned with the next semester period. Students must consult with Student Services regarding the impact of a degree change on their program of study before, or in conjunction with, submission of a Degree Change application form. Students should also consult with financial aid regarding impact on funding eligibility. Students will remain under the original catalog year they enrolled, provided they remain continuously enrolled at UAT. Students who wish to change to a degree that was not offered during their original catalog year must change their catalog year to the most current catalog in order to make the change. Students who have been awarded transfer credit from a previous institution should also refer to the Transfer Credit for Previous Education Policy.

MULTIPLE DEGREE POLICY

Pursuit of a second degree can increase breadth of knowledge and specialization. Students pursuing a concurrent second degree must officially declare their intent to do so with Student Services to plan their program of study for both degrees. A student must submit appropriate documentation after consulting with Student Services and fulfill the graduation requirements for each degree.

STUDENT CLASSIFICATION (ACADEMIC LEVEL)

All University of Advancing Technology students are enrolled as full-time regular students in a program of learning. University of Advancing Technology equates undergraduate class standing in the following manner:

- Freshman: 0–23 Credit Hours earned or accepted
- Sophomore: 24–47 Credit Hours earned or accepted
- Junior: 48–89 Credit Hours earned or accepted
- Senior: 90 or more Credit Hours earned or accepted

COURSE LOAD

Undergraduate students enrolled at University of Advancing Technology are required to maintain full-time status. The Provost or designee must approve exceptions to this requirement. However, students may take credits under full-time status if it is their final semester. Full-time status for an undergraduate student is defined as a minimum of 12 credit hours in a single semester. Note that Financial Aid eligibility may be impacted by a reduction to less than full-time enrollment. Undergraduate students registering for courses in a single semester are limited to a maximum of 18 credit hours. Overrides are available for students wishing to take up to 21 credit hours in a single semester. Overrides are granted for those students whose UAT academic record reflects a CGPA of 3.5 or better. However, if a student attempting more than 18 credits in a single semester should fail or withdraw from a course during that semester, he or she will not be eligible for an override on course load in future semesters.
INTERNSHIPS
Internships are considered a supervised, practical experience that is the application of previously learned theory.

ATTENDANCE
Students are expected to attend and take an active part in all class activities and learning methodologies to obtain the full benefit of the UAT educational experience. Students absent for 14 consecutive calendar days are subject to withdrawal by the University.

ACADEMIC BREAKS
An academic break is a natural break in classes. During an academic break, students are considered to be in a continuously enrolled status with no negative effects to their good standing or their satisfactory academic progress. Students receiving Veterans Educational Benefits should contact the Veterans Services Coordinator in the Office of Financial Aid for further information regarding potential impact of funding.

COURSE AND INSTRUCTOR EVALUATIONS
Course and instructor evaluations are conducted near the completion of each course at UAT. Evaluations are completed electronically by each student and are utilized as an important resource for curriculum refinement and instructor training. Students are expected to complete evaluations for each course.

GRADING
Students will be awarded a grade for each course according to the following system:

- A = Excellent (4.0) passing
- B = Above Average (3.0) passing
- C = Average (2.0) passing
- D = Below Average (1.0) passing
- F = Failure (0) not passing
- I = Incomplete (I)
- W = Withdrawal (W)
- TR = Transfer Credit (TR)
- AU = Audit (AU)
- P = Passing (not included in GPA)
- NP = Not Passing (not included in GPA)
- PA = Passed by Assessment (not included in GPA; no credit awarded)

The semester grade is a weighted composite of the course grades. A passing grade of D (1.0) or higher is required for courses to be considered as satisfying a prerequisite requirement.

GRADE POINT AVERAGE (GPA)
Each student at the completion of each semester will have attained both a Cumulative Grade Point Average (CGPA) and a semester Grade Point Average. Grade Point Averages are computed using a 4.0 scale as indicated in the University grading policy. Each course’s credits are multiplied by the grade received in the course with the result being noted as quality points on the transcript. The CGPA is the result of the total quality points divided by the total attempted credit hours. The semester GPA is the result of each semester’s quality points divided by its attempted credit hours. In the case of repeated courses, the University will use the highest grade received in the computation of the student’s CGPA.

GRADE DISCREPANCIES
When a student believes his/her grade recorded on the transcript may be incorrect the student should contact the instructor by email. The instructor will respond within 48 hours to the question during the semester or prior to the beginning of classes if the question is submitted during the semester break. The instructor will notify the student of the results of the grade verification request via email. If the student does not hear back from the instructor, the student should directly email Student Services at studentservices@uat.edu. Students with questions regarding transfer credit grades (TR) should contact the registrar at registrar@uat.edu.

HONORS REQUIREMENTS
UAT confers three levels of Undergraduate Cumulative Grade Point Average (CGPA) based honors to students upon graduation. At the time of their graduation:

> A student with a cumulative GPA of 3.5–3.74 graduates Cum Laude.
> A student with a cumulative GPA of 3.75–3.89 graduates Magna Cum Laude.
> A student with a cumulative GPA of 3.9 or above graduates Summa Cum Laude.

Students who have earned a cumulative GPA of 3.5 or higher at the time of their graduation are eligible for induction into the Alpha Beta Kappa National Honor Society.
LEAVE OF ABSENCE
This policy provides the basis for a defined interruption in a student’s program of study and the terms of his or her return. Any LOA that does not qualify as an Approved LOA will be treated for Title IV purposes as a withdrawal requiring that the institution perform a Return of Funds calculation.

Approved Leave of Absence
In order for an LOA to qualify as an approved LOA the following requirements must be met.
1. The request for LOA must be made in writing and include the valid, documented reason for the request.
2. The student must indicate a reasonable expectation of returning to attendance.
3. The institution may not assess the student any additional charges for the student’s completion of the prior term’s course material upon his or her return.
4. The LOA together with any additional leaves of absence must not exceed a total of 180 days in any 12-month period.
5. A student shall resume attendance at the same point in the academic program that he or she began the LOA. If the student returns earlier, the period of the approved LOA does not terminate until the point in the semester that he or she began the LOA.
6. The institution must explain to the student the effect that non return will have on the student’s repayment terms for all Title IV disbursements.

If a student does not return to the school at the expiration of an approved LOA, the student’s withdrawal date is the date the student began the approved LOA.

WITHDRAWAL FROM THE UNIVERSITY
A student may initiate a withdrawal from the University at any time. If it is determined that the student does not intend to return to school, UAT may initiate the process to withdraw the student.

Date of Determination
In general, the semester day the student withdrew is the date that the institution determines the following:
1. The student began the withdrawal process required by the University.
2. The student otherwise provided official notification to the University of the intent to withdraw.
3. Or, in the case of a student who did not begin the withdrawal process or otherwise notify the University of their intention to withdraw, the date of determination of the student’s withdrawal will be 14 days from the student’s last day of attendance.

Withdrawal Date
A student’s withdrawal date is the last date of attendance as determined by the school from its attendance records.

INvoluntary Withdrawal
University of Advancing Technology is committed to protecting students, staff, and faculty from the risk of physical harm and preserving the safety of the campus.

This policy applies when a student’s actions or statements indicate a threat to the student’s own health and/or safety, or a threat to the health and/or safety of others. It should only be used in extraordinary circumstances, when a student is unwilling to request a voluntary leave of absence or withdrawal from the University.

This policy is not intended to apply to situations in which a student engages in behavior that violates the University’s Code of Conduct. However, there may be situations in which both the Involuntary Withdrawal Policy and a Code of Conduct violation apply. In all cases, the University shall have final authority regarding the decision and enforcement of the involuntary withdrawal of a student. In addition, the Americans with Disabilities Act (ADA) policy will be considered in the decision, if applicable.

A student may be withdrawn involuntarily, or placed on an involuntary suspension from UAT if the University determines that the student represents a direct threat to the health and safety of himself/herself or others by engaging in behavior which poses a high probability of substantial harm to himself/herself or others or has acted in a manner in conflict with the values of UAT. If a student is involuntarily withdrawn or suspended, the normal refund policy applies. If the student is living in university-sponsored housing, he/she may be required to vacate housing.

In addition, students may be involuntarily withdrawn for financial, academic, or other reason on a case-by-case basis.
Emergency Suspension

The University may take emergency action to suspend a student if there is imminent danger of serious physical harm to the student or others, or if there is imminent danger of significant property damage. In the event emergency action is taken to suspend the student, parents will be notified of the decision, even if a records release form in determining what information to release to parents. However, in the extraordinary circumstances a student is involuntarily withdrawn, Student Services may require a student who has been involuntarily withdrawn or placed on leave of absence, or has chosen to withdraw or take a leave of absence to be re-evaluated before he/she is readmitted in order to assure that he/she presents no direct threat to himself/herself or others. This is in addition to all regular re-entry policies and procedures.

Conditions for Re-Entry

Because this Involuntary Withdrawal Policy applies to cases in which there is a concern about the safety of the student or others, Student Services may require a student who has been involuntarily withdrawn or placed on leave of absence, or has chosen to withdraw or take a leave of absence to be re-evaluated before he/she is readmitted in order to assure that he/she presents no direct threat to himself/herself or others. This is in addition to all regular re-entry policies and procedures.

Parent Notification

FERPA laws are upheld by utilizing a student’s records release form in determining what information to release to parents. However, in the extraordinary circumstance that a student is involuntarily withdrawn from the University, parents will be notified of the decision, even if a records release form is not on file, regardless of dependency.

Satisfactory Academic Progress

In compliance with Department of Education regulation the University has adopted a policy of satisfactory academic progress which will promote the successful completion of each student’s academic program. In order for a student to be eligible for Title IV and/or VA assistance, the student must meet the following criteria at the evaluation points set forth below. This policy applies to all students whether they are enrolled in a full time, part-time, graduate or undergraduate program.

Every student’s academic progress will be evaluated at the end of every semester.

For a student to meet the standards of Satisfactory Academic Progress the student must have a cumulative grade point average at the end of the first semester of 1.4 for undergraduate and 2.0 for graduate students. The student must have a cumulative grade point average at each evaluative moment thereafter of 2.0 for undergraduate students and 3.0 for graduate students.

A student must demonstrate at each evaluation that he or she is completing course work at a pace that will ensure completion of the program. Consequently, a student must demonstrate at the first evaluation that he or she has successfully completed 50% of credits attempted. At each subsequent evaluation a student must demonstrate that he or she has successfully completed 67% of credits attempted.

All transfer credits that are accepted by the University and applied to the student’s program of study will be treated as both credits attempted and credits completed. Incompletes will be treated for SAP in accordance with the University’s policy on incompletes but will not be used in the calculation until a final grade is entered. Repeated course work will be treated under the repeated course work policy but all classes taken that have grades will be treated as courses attempted and courses completed.

Classes from which the student withdraws under the university individual course withdrawal policy will not be treated as credits attempted but not earned.

A student who fails to achieve the standards of CGPA and Pace under this policy will be placed on one semester of warning. A student who fails to achieve standards of CGPA and Pace after one period of warning will be ineligible to receive any funds under Title IV and/or VA assistance. Students will be assigned to warning status for Title IV and/or VA assistance after being placed in the warning status the student must reestablish compliance with the standards of CGPA and Pace.

The University will notify the student of any result of an evaluation that affects the eligibility of the student for Title IV and/or VA assistance. This notification will be given within 7 days of any negative determination. If after being placed on Warning and if at the end of that semester the student fails to achieve a CGPA or Pace that ensures completion within maximum time frame, a decision of the University to place the student in a status of ineligible for Title IV and/or VA assistance may be appealed by the student. The appeal must be filed with the Office of Student Services within 30 days of notification of ineligibility. UAT procedures include disbursing Title IV funds and/or VA assistance to the student if the student appeals the determination; and the institution determines that the student should be able to meet the institution’s SAP standards by the end of the subsequent semester or the school develops a 2 semester academic plan for the student that, if followed, will ensure that the student is able to meet the institution’s SAP standards by the end of the plan. Any two -semester plan will be reviewed at the end of the first semester to ensure appropriate SAP progress.

In order to appeal a decision of ineligibility a student must submit information as to why the student failed to make satisfactory academic progress and what has changed in the student’s situation that will allow the student to demonstrate satisfactory academic progress at the next evaluation.
AMERICANS WITH DISABILITIES ACT (ADA)
The Americans with Disabilities Act (ADA) was enacted to extend to otherwise qualified individuals full access to all aspects of public accommodation, including education. The ADA became effective in July 1992 and prohibits discrimination on the basis of disability. The University does not illegally discriminate on any basis and, in fact, welcomes students with disabilities. The college’s facilities have been designed with many special accommodations for people with disabilities and the University inventories many special devices for students which are useful in helping accommodate a variety of physical disabilities.

The ADA is a positive piece of legislation and the college readily complies with all of its provisions. As an employer of more than 25 persons and as a public service provider, the ADA affects the college in two areas: employment of Americans with disabilities and the servicing (education/enrollment) of these persons.

To prevent discrimination, educational services must:
> Be provided in an integrated setting if possible.
> Make reasonable accommodations unless a modification would result in an undue hardship to the institution or a fundamental alteration of the services provided.
> Furnish auxiliary aids and services when necessary.
> Remove architectural and structural communication barriers in existing facilities when readily achievable.
> Provide readers, note-takers and tutors as required.

The University is not required to provide:
> Personal devices such as wheelchairs.
> Individually prescribed devices (e.g., glasses, hearing aids).
> Services of a personal nature (e.g., assistance in eating, dressing or toileting).

Extra charges to cover accommodation may not be made. Auxiliary aids are not required if they would result in an undue burden (significant difficulty or expense) being placed on the school.

Physical barriers must be removed; however, this college has an ADA-compliant facility at this time and significant effort has already been made to make the facility fully accessible. All individuals involved in recruiting, training and serving students must ensure that students be admitted, trained and serviced equally with no discrimination for disabilities. All efforts should be made to find cost effective ways of accommodating students with disabilities. Student Services should be contacted in all cases of disabled applicants, in order that proper attention is paid to finding suitable and reasonable accommodations.

PROCEDURE
Students who are requesting accommodation for a specific disability will provide a written request for accommodations required and appropriate documentation by a qualified medical or disability specialist of their disability when they apply to the University.

Requests for accommodations will be accepted at any time in a student’s program of study; however, students must realize that it may take the University a longer time to comply with certain accommodations than others, so alerting the University at the time of admission provides the best service for the student. A student who is currently enrolled in the school should provide the above materials to Student Services when requesting accommodations.
A designated disability committee of the University will determine whether the documentation provided is appropriate and adequate to establish covered disability under the ADA. Student Services will maintain the request and supporting documentation on the student. The University will enter into an interaction with an otherwise qualified individual who has a covered disability with the stated purpose of ascertaining whether there is a reasonable accommodation that is both available and appropriate to enable the student to pursue a fully integrated educational experience. It is not the responsibility or duty of the University under the ADA to reduce or change its academic standards in connection with a request for accommodation, but rather to ensure that an otherwise qualified person with a covered disability receives an opportunity to receive a fully integrated educational experience through the use of reasonable accommodation.

Students who have requested an accommodation from the school and feel that they are being discriminated against should immediately report this to Student Services.

CAMPUS SAFETY POLICY

OFFICE OF CAMPUS SAFETY

In addition to the express role of each member of the University community, the University has established an Office of Campus Safety which has as its primary Key Responsibility Area, the coordination and promotion of the safest environment possible for all students, faculty and staff. Campus safety is promoted and maintained through diligent observation by the entire community supported by trained safety personnel and deployed safety technology. Access to campus is controlled through a personal identification system applicable to all students and staff. The campus is monitored 24 hours a day by safety officers or a network of security monitors providing additional visual coverage and information for safety personnel.

University of Advancing Technology is a uniquely safe and secure community in a larger urban setting. The University is committed to maintaining this safe and secure learning and working environment for all students, employees and guests. All University students, employees and guests are ultimately responsible for their own personal safety and the security of their belongings. The following safety and security principles are in place to aid the University community in maintaining the safe and secure campus that we enjoy today:

UNIVERSITY SAFETY PHILOSOPHY

The University sees itself as a unique community of technologically sophisticated students and staff that have learned to collaborate and team together to address a myriad of challenges both educationally and professionally. The commitment to safety at the University is based upon a philosophy that the institutional capacities to team and use technology produce results that are superior to simple individualistic approaches. Consequently the safety philosophy is based upon three key elements:

1. Everyone is responsible to be on alert and to identify safety issues.
2. Timely warning and communication must be accomplished by well-designed solutions.
3. Each member of the University community needs to feel empowered to take appropriate action to maximize safety for themselves and for other members of the community.

These principles are set forth to create a foundation of safety systems that will be designed and employed by the Office of Campus Safety as well as all of the institutional departments of the University. These principles will find expression in the interactions with students, faculty and staff, and ultimately be strengthened by the coordinated efforts of the Office of Campus Safety.
WEAPONS
The possession, display, or storage of weapons is prohibited on all land and buildings owned, leased, or under the control of University of Advancing Technology or its affiliated or related entities, in all UAT owned or leased vehicles on or off campus, and at all UAT or UAT affiliate-sponsored events and activities, except as provided in Arizona Revised Statutes 12-781. Any person found in violation may be subject to all applicable state and federal laws, University policy, and the Student Conduct Code. UAT students and employees are required to report violations and suspected violations of this policy to UAT Office of Campus Safety, immediately.

Exceptions
1. A certified peace officer performing his or her official duties.
2. Any other exception to this policy must be approved by the Vice President of Talent and Operations.

PERSONAL SAFETY AND COMMUNITY AWARENESS
Campus safety requires that students and employees assume reasonable responsibility for their own personal safety. In this regard all students and employees must take common sense precautions to assure the safety of themselves and other members of the University community. Students and employees are encouraged to attend safety and security related events to learn more about personal responsibility and protection. Students and staff should email safety concerns to safety@uat.edu.

IF YOU WITNESS AN EMERGENCY SITUATION
If you witness emergencies involving personal safety or property call 9-1-1 immediately and then report the incident to Student Services or the Office of Campus Safety. All other suspicious activity and hazardous conditions should be reported to a designated safety officer on duty. It may also be prudent to contact the Tempe Police by calling the non-emergency phone number 480-350-8311.

TIMELY WARNING
Integral to the University’s Safety Philosophy is the principle that any imminent or sustained danger to the safety of our community must be communicated as quickly and broadly as feasible to give necessary information that will enable students and employees to take reasonable steps to ensure their own individual and collective safety. Warnings must utilize multiple communication paths such as emails, text message, and person-to-person communication. In addition to the aforementioned, the University, through the Office of Campus Safety, will provide students and employees of any sustained or prolonged danger through technological communication channels. The warning by the Office of Campus Safety will contain information necessary to employ all appropriate steps for each member of the community to maximize his or her safety. All incidents must be recorded immediately in the system of record to allow for easy access for review of pertinent information regarding a reported incident.

In the event of an imminent threat to the safety of students or employees all members of the community are expected to utilize the emergency@uat.edu email group to communicate the nature and extent of the threat throughout the University email system.

JEANNE CLERY DISCLOSURE OF CAMPUS SECURITY POLICY AND CAMPUS CRIME STATISTICS ACT
In compliance with Federal law, Title 34 CFR part 668.46 the University makes available to students, employees, and prospective students campus crime statistics as required by the Department of Education regulations. Crime Statistics are available at: uat.edu/crimestatistics.

For more information, the University’s current Annual Security Report is available at: uat.edu/annualsecurityreport. Interested parties may print a paper version of the Annual Security/Fire Report from this link or contact the Office of Campus Safety or a member of Student Services to obtain a paper copy. If you would like a copy mailed to you please include your full name and mailing address with your request by emailing safety@uat.edu.

Questions, concerns and comments regarding campus safety should be directed to the Campus Safety Manager at 480-351-7896.

CODE OF CONDUCT
The UAT community consists of students, faculty and staff, all of whom are expected to maintain a high standard of ethics, behavior and purpose. UAT students are important and vital members of this community because they represent the University in all of their personal and public endeavors, both on or off campus. Students carry the obligation to conduct themselves in a manner that is responsible, professional, ethical and beneficial to themselves and other members of the University community. These expectations hold true on campus, in the UAT Residence Life Community and wherever they represent the University in any capacity.

In carrying forth the culture, traditions and values of the greater world community, UAT students shall:
1. Promote and exemplify good digital citizenship and high ethical standards. Infractions of this order include, but are not limited to, illegal hacking, downloading/uploading of offensive material, digital theft or other actions which contradict UAT policies and values, good ethical standards, or local, state and federal laws.
2. Respect differences. The health, welfare, beliefs and intentions of others are not always our own, but we must protect them as if they were.
3. Respect the institutional values of UAT and understand that positive change at UAT occurs through considered, balanced dialogue between students, faculty and staff, as well as the community at large.
4. Respect and engage in different learning and teaching styles and value the pursuit of a lifetime of learning.
5. Promote and embody thinking skills.
6. Promote and embody teamwork.
7. Act with honesty and diligence with respect to their responsibilities to the University and its facilities, including registration, completion of course materials and observance of UAT email policies, which prohibit the sending of mass emails.
8. Abide by UAT’s policies related to possession of weapons, illegal drugs or alcohol on school premises or in the UAT Residence Life Community.
9. Prevent or report behavior creating a safety hazard to other persons at the school.
3. Taking personal responsibility, while working
2. Timely and regular completion of assigned
1. Timely attendance, due preparation and
education:

In addition to the codes of student conduct, students
STUDENT RESPONSIBILITIES
In addition to the codes of student conduct, students
who attend University of Advancing Technology are
expected to embody the following responsibilities that
are closely associated with excellence in collegiate
education:
1. Timely attendance, due preparation and
active engagement in classes and related
learning activities.
2. Timely and regular completion of assigned
homework to the best of their individual abilities.
3. Taking personal responsibility, while working
closely with the University, for fulfilling all
requirements toward graduating in their program
of study.

4. Promoting good and timely communication
by monitoring and promptly answering all
communication from the University, including
phone messages, email, personal notification or
written communications.
5. Promoting collegiate collaboration by engaging
in conversations with instructors in areas of
learning, academic difficulty and future goals.
6. Taking personal responsibility for their educational
progress by keeping track of grades and
assignments and ensuring that all paperwork
required by the University is completed on time
and turned in to the proper department.
7. Participating promptly in University information
gathering systems such as evaluations, surveys
and other feedback mechanisms.
8. Taking an active role in the UAT community.
9. Reading and adhering to the Code of Conduct.
10. Observing all policies of UAT as stated in
this catalog.

CONSEQUENCES
Students who are found to be in breach of the Code
of Conduct Policy are subject to consequences set
forth through a University Disciplinary Committee.
These consequences will vary based on the type and
severity of the Code of Conduct breach. Examples
of consequences include mandated counseling,
temporary suspension, expulsion from the University,
or any other action as deemed appropriate by the
Committee. The Committee will be made up of
representatives throughout the University and each
infraction will be considered on a case-by-case basis.

POLICY ON DRUGS AND ALCOHOL
The Drug-Free Workplace Act of 1988 and the Drug
Free Schools and Communities Act Amendments
require University of Advancing Technology to adopt
and put into effect a program to prevent the unlawful
manufacture, distribution, dispensation, possession
or use of illegal drugs or alcohol by students and
employees on University property or in University
facilities, or at University events, and to offer an anti-
drug and alcohol abuse program.

University of Advancing Technology is committed
to maintaining an environment free of illegal drugs
and alcohol abuse. The Drug-Free Schools and
Communities Act Amendments of 1989 (effective
9-1-90) require the distribution of the following
information to all students and employees.

COLLEGE POLICY ON DRUGS
Sale, use, possession or distribution of prohibited
drugs or controlled substances is prohibited in
college buildings or grounds, at college sponsored
events or in University-sponsored housing. The term
drug covers all controlled substances as defined in
Chapter 34 Arizona Revised Statutes Section 13-3401
to 13-3422 that can be found at www.azleg.state.
az.us/ArizonaRevisedStatutes.asp?Title=13.

Offenders are subject to college discipline, up to and
including dismissal from the college or termination
of employment and referral for prosecution. An
employee convicted of any violation of the criminal
drug statutes for activities in or on property owned or
controlled by the University, at activities sponsored
by the University or in University-sponsored housing
must notify his or her manager or dean of the
conviction, in writing, within five calendar days
of conviction.

OBLIGATIONS OF THE COLLEGE
The University must notify the appropriate federal
agency (e.g., Department of Education) of the
conviction of any employee or student worker paid
whole in or on behalf of any fund or agency within ten days
of receipt of the notice of conviction. The University
must also make a good faith effort to maintain a
drug-free workplace, offer drug awareness education,
assist students and employees seeking treatment or
rehabilitation, notify employees and students of its
policy, and implement and enforce the policy.

COLLEGE POLICY ON ALCOHOL
The sale, dispensation or consumption of alcoholic
beverages is prohibited on campus or in the UAT
Residence Life Community unless specifically
authorized at an event approved by the President
of the University. In all other cases possession,
consumption or distribution of alcoholic beverages
is prohibited.

STUDENTS
Compliance with the provisions of the University drug
and alcohol policies is a condition of attendance at
the University. Violators of these policies are subject
to discipline, up to and including expulsion from
college, eviction from University-sponsored housing
and referral for prosecution.
STUDENT WORKERS
Student workers are subject to discipline, up to and including termination of employment, referral for prosecution or corrective action as the college deems appropriate.

LOCAL, STATE AND FEDERAL LAWS
Campus Open Container Policy
Permission to consume alcohol on University property at a specific event must be requested in writing and granted in writing by the President of the University.
For the dispenser of alcoholic beverages, the following provision of the Arizona state law pertains:

Minimum Purchase Age
No person shall sell, deliver, give away, permit or procure to be sold, delivered or given away any alcoholic beverage to someone under, or appearing to be under, the age of 21 years.

The dispenser is obligated to demand proof of legal age whenever in doubt. For the consumer of alcoholic beverages, the following provision of Arizona state law pertains:

False Identification
In Arizona, anyone under the age of 21 years who presents false or fraudulent written identification in order to secure alcoholic beverages is guilty of a criminal offense.

Possession of Marijuana
A person who knowingly possesses or uses marijuana in Arizona is guilty of a felony.

Drinking and Driving
All states prohibit drinking and driving. In Arizona, it is unlawful to operate a motor vehicle if the operator or person in control of the vehicle is impaired in the slightest degree. A person convicted may serve ten days in jail or more and pay a fine of not less than $250.00.

Arizona State Motor Vehicle Law
The rules and penalties for drinking and driving apply to driving a motor vehicle while under the influence of illicit drugs.

COUNSELING, REHABILITATION AND RE-ENTRY SERVICES
Students seeking counseling in college or referral to community services for drug and alcohol abuse should call or visit Student Services.

For additional assistance or counseling, students can contact the following agencies and programs:

Banner Behavioral Health Services
602-254-HELP (4357) 8 a.m.–8 p.m.
7575 East Earl Dr., Scottsdale, AZ 85251

Saint Luke’s Behavioral Health Center
602-251-8535/800-821-4193
1800 E. Van Buren St., Phoenix, AZ 85006

Terros/Phoenix Interfaith Counseling
480-317-9868
1232 E Broadway Rd., Ste 120, Tempe 85282
8 a.m.–5 p.m.

Desert Vista Behavioral Health
480-344-2000
570 W. Brown Rd., Mesa, AZ 85201

La Frontera EMPACT Suicide Prevention Center
480-784-1514
lafronterarizona.org
618 S Madison Dr., Tempe 85281

East Valley Substance Abuse Center
480-833-8122
1550 E. University Dr., Mesa, AZ 85203

Alcoholics Anonymous
Salt River Intergroup
3215 E Thunderbird Rd., Phoenix 85032
602-264-1341

24-Hour Crisis Hotlines:
800-656-HOPE—RAINN Sexual Assault Hotline (National)
800- SUICIDE—HopeLine Suicide Hotline (National)
480-784-1500—Suicide/Crisis Hotline (Maricopa County)
866-205-5229—Toll-Free Sexual Assault Hotline (Arizona)
480-736-4949—Sexual Assault Hotline (Maricopa County)

FAMILY EDUCATIONAL RIGHTS AND PRIVACY ACT (FERPA)
University of Advancing Technology follows the Family Educational Rights and Privacy Act (FERPA), which provides students certain rights with respect to their education records. Designed to protect the privacy of education records, FERPA establishes guidelines for handling the release of such records.

Specifically, FERPA provides eligible students the right to:
> Inspect and review their education records within 45 days of the day the University receives a request for access.
> Request an amendment to the student’s education records that the student believes are inaccurate or misleading.
> Consent to disclosures of personally identifiable information contained in the student’s education records, except to the extent that FERPA authorizes disclosure without consent.
> File a complaint with the U.S. Department of Education concerning alleged failures by the College to comply with the requirements of FERPA.

FERPA protects the education records of students who are currently enrolled or formerly enrolled at the institution. The education records of students who have applied to but have not attended an institution are not subject to FERPA guidelines, nor are deceased students.

Access to student information is allowed to any of the following:
> The student and any outside party who has the student’s written request.
> School officials (as defined by the University) who have legitimate educational interests.
> Parents of a dependent student as defined by the Internal Revenue Code.
> A person in response to a lawfully issued subpoena or court order, as long as the University makes a reasonable attempt to notify the student first.

DRESS CODE
Appropriate dress and footwear for the collegiate environment are expected at all times.
A student’s consent is not required to disclose information in the following instances:

> To school officials (defined in policy) who have a legitimate educational interest.
> To federal, state and local authorities involving an audit or evaluation of compliance with educational programs.
> Relating to student financial assistance—including Federal Student Aid, Veterans’ benefits and other funding.
> To parents of a dependent student.
> To comply with a judicial order or subpoena.
> To organizations conducting studies for or on behalf of educational institutions.
> To accrediting and licensing organizations.

DEFINITIONS

School Official
A school official can be a person:

> Employed by the college in an administrative, supervisory, academic, research or support staff position (including law enforcement and health staff personnel),
> Elected to the Board of Directors,
> Serving as a student representative on an official committee, or assisting another school official in performing his or her tasks,
> Or a company employed by or under contract to the college to perform a specific task, such as, an agent, an attorney, an auditor or an outsourced service provider.

Legitimate Educational Interest
A school official has a legitimate educational interest if the official needs to review an education record in order to fulfill his or her professional responsibility.

Educational (Student) Records
These are records that are directly related to a student and are maintained by the educational agency or institute. These records can include, but are not limited to, academic records, financial aid records and placement records.

Directory Information
Directory Information is defined as information contained in an educational record of the student that is not generally considered harmful or an invasion of privacy if disclosed.

UAT has designated the following items as directory information in alignment with FERPA guidelines:

> Student name
> Address
> Personal email address
> Phone number
> Date and place of birth
> Hometown
> Degrees, certifications awards, and scholarships received and dates
> Dates of attendance (current and past)
> Enrollment status
> Participation in officially recognized activities, clubs or sports
> Most recently attended educational institution
> Major field of study
> Academic levels
> Photographs and videos
> Academic Awards and honors
> Scholarship Awards

Students wishing that no directory information be released must submit written notification to the Office of the Registrar at the University campus in Tempe, Arizona: registrar@uat.edu.

RECORDS POLICY

In compliance with the Family Educational Rights and Privacy Act of 1974 (FERPA), University of Advancing Technology allows students access to their educational records.

These records include all information maintained by the school which is directly related to the student, with the exception of the financial records of their parents and educational records containing information about more than one student. The University permits access to that part of the record that pertains only to the inquiring student.

Student records are confidential and, other than to the student, only such agencies or individuals authorized by FERPA are allowed access without express permission by the student through a records release form. These records are left on file indefinitely. Directory information, however, may be released to valid inquiries unless the student specifically requests in writing that this information not be released.

If a student wishes access to his or her records, he or she should contact the University’s Office of the Registrar and complete a written request specifying the desired records. Information on a student’s records will be made available by appointment from the institutional office within forty-five (45) days of the receipt of the written request.

Upon graduation, one copy of student’s official transcripts will be mailed automatically to the student’s most current address at no charge. Transcripts are maintained indefinitely by the University.

FLAMMABLE MATERIAL

The University intends to maintain a safe environment for both students and employees. Flammable liquids and gases pose a particular hazard when stored or used in living areas. It is our intention to provide information and procedures to the UAT community on how to deal with and handle flammable liquids. The procedures will also address issues concerning open fires and the use of fire pits. UAT works closely with the Tempe Fire Department to ensure we adhere to the city and state fire codes.

FLAMMABLE LIQUIDS AND GASES

The hazard of flammable liquids and gases are typically created by the evaporation of fuels or solvents in confined spaces, mixing with air to form a flammable region, and ignition by an open flame, pilot lamps, stove, cigarette lighter or faulty wiring. Gasoline, acetone, camping stove fuel (white gas or butane), lighter fuel, and propane torch canisters are common items that can supply the fuel. These materials must not be used or stored in student living areas. Certain household combustibles such as hair spray and nail polish are exempt from this requirement and may be possessed by students in their living areas. Mopeds, motorcycles and scooters must not be stored inside residences or parked outside next to an exit, since the gas shut-off valves can leak or not be properly used, creating a flammable vapor hazard. UAT provides our community with approved parking on the west side of the campus for mopeds, motorcycles and scooters.
EXPLOSIVES AND IMPROVISED EXPLOSIVE DEVICES
Explosives are extremely hazardous and it is illegal and against University policy to possess either manufactured or improvised explosives on the University campus and University buildings. Use and storage of explosives is strictly controlled by local, state, and federal laws and are not allowed on campus. The Bureau of Alcohol, Tobacco, and Firearms (BATF) regulates types of explosives from fireworks to dynamite. See www.gpo.gov/fdsys/pkg/FR-2013-10-28/pdf/2013-25370.pdf for the latest list of such materials.

COMBUSTIBLE HAZARDOUS MATERIALS
Flammable liquids, gases, solids, and explosives, including fireworks, may not be possessed or used on University property. The Office of Campus Safety will have the authority to approve the use of flammable liquids to be used by employees of UAT. This may include but not limited to the Café and Founders Hall (outside grills), welding and the use of gasoline powered tools.

Issues that may be of concern are:
1. Permits for open flames, bonfires
2. Hot ashes and spontaneous ignition sources
3. Deliberate of negligent burning
4. Location for open burning
5. Bonfires
6. Recreational fires
7. Open flames
8. People attending events
9. Location of storage outside of building

Please contact the Office of Campus Safety for procedures and permissions.

COMPUTER DISCLAIMER
Neither University of Advancing Technology nor our learning management system provider is responsible for lost files, data, homework, email, computer generated graphics or computer projects loaded on the UAT campus network or personal computers. Students are responsible for maintaining current and viable backup material of all of their work on their own media. In addition, the student is responsible for making sure that all assignments are delivered to instructors in a timely fashion regardless of whether the computer network, email or Intranet is functioning properly.

UAT is not responsible for events or conditions, either natural or man-made, occurring externally to the immediate UAT campus environment or as a result of externally produced actions.

WIRELESS NETWORKING DEVICES
University of Advancing Technology will provide support for wireless devices within the confines of the UAT campus for access to the Internet. The support of this technology is to encourage users to use laptops and other electronic devices while on campus, taking full advantage of all of their communication capabilities. Users utilizing wireless technologies are expected to use the tools to assist them in their educational goals and are expected to adhere to all procedures stated in the Student Code of Conduct and other University policies. In addition, the University will provide secure wireless access using the 802.11b/g/n standards to network resources for University administrators, approved staff and University owned equipment.

1. No Laptop or wireless device will have access to the secure wireless network unless the device is owned by UAT.
2. Users only need to have DHCP enabled on their wireless device to gain Internet access. Network resources, such as printing or server access will not be available through the public wireless network.
3. Any one using a wireless device for any unethical practice or illegal activity will be subject to the procedures described in the Student Code of Conduct or Employee Code of Conduct.
4. UAT will not be responsible for any damage that may occur to a wireless device due to technical malfunction or misuse of the networking device. The public wireless network is a non-secure unmonitored network. Users are encouraged to ensure they use proper anti-virus software to prevent infection and other security measures to prevent interception of their activity.

LIBRARY EQUIPMENT LENDING
University of Advancing Technology is committed to ensuring resources are available for learning. All equipment that can be borrowed and taken from the library by community members must be borrowed equitably and responsibly by all knowledgeable students and employees regardless of degree or job duties. All University students and employees will be held responsible for any damage to equipment in their care. Ramifications for damage done to equipment may include fines up to the entire replacement cost of the item(s). All University students and employees will also be held responsible for disruptions caused by failure to return equipment in a timely manner. Ramifications for failure to return equipment in a timely manner may include loss of lending privileges for up to one semester. Equipment is to be used for educational purposes and is not intended for commercial purposes.

MASS COMMUNICATION
In order to ensure that communications between University of Advancing Technology, its students and employees are consistent and complete, all communication that is to be distributed to students or employees must adhere to all University policies and procedures. Please refer to the procedures for contacts and procedure for each type of communication.

In order to increase the effectiveness of communication, various communication tools and services are available to both staff and students. Anyone who needs to communicate with staff or students may make requests through the Intranet:

> Text Messaging: University wide text messaging is reserved for marketing purposes and safety concerns only. Marketing is the only department that may send out non-emergency text messages.
> Emergency Communications: E-mail mass mailing is reserved for the UAT President, Provost or their designee, Human Resources, and the Office of Campus Safety. In an Emergency, any student or staff member may email emergency@uat.edu which will be evaluated for further distribution and may be sent to every UAT e-mail address. Emergency text messages may only be sent out by the UAT President, Provost or their designee, regarding any emergency concerns.
> Non-emergency Safety issues: any student or staff may e-mail safety@uat.edu to report a non-emergency safety issue.
MISSING PERSON POLICY

All reports of students missing from UAT housing, including both on and off-campus UAT housing (hereinafter Housing Students), shall be directed to the Office of Campus Safety. Upon an official report of a missing Housing Student, the Office of Campus Safety will conduct an investigation to determine whether the Housing Student is a missing person in accordance with this policy. A Housing Student will be deemed and is therefore determined to be a missing person if he or she has been missing for more than 24 hours, after the official report, without any known reason and contrary to known patterns of behavior.

NOTIFICATION PROCEDURES

The Office of Campus Safety must notify Tempe Police within 24 hours of a determination that a Housing Student is a missing person. Also within 24 hours of the missing person determination the University must initiate emergency contact procedures in accordance with the Housing Student’s designation, this policy, and legal obligations.

All Housing Students shall have the opportunity to designate an individual and/or to provide confidential contact information to be used for notification if the student is determined to be a missing person. If a Housing Student is under 18 years of age and not emancipated, however, the University will notify the student’s parent or guardian as soon practicable, but in no case later than 24 hours from the time the student is determined by the Office of Campus Safety to be a missing person.

PARKING POLICY

The Office of Campus Safety (OCS) is responsible for monitoring and controlling parking on campus. University students, guests and employees are expected to park as directed in authorized parking areas and to take responsibility for their vehicle and property.

Unauthorized vehicles on campus that do not display a UAT parking decal or visitor permit may be subject to the University’s parking sanctions. Vehicle owners are responsible for their own personal property and are advised that any fees resulting from unauthorized parking are the vehicle owner’s personal responsibility.

Parking permits are sold on a semester basis and are required for parking on campus. All other vehicles, with the exception of visitors, may park free of charge at remote authorized parking areas. The remote authorized parking areas are not patrolled or monitored. Parking on the UAT campus and other authorized parking areas may be used at your own risk. UAT is not liable for any theft or damage to a vehicle or to the personal property within a vehicle.

Parking may be open to all UAT community members for special occasions determined by the office of Organizational Development.

Per the Jeanne Clery Act, all universities must report certain crimes which occur on campus or properties owned/rented by a university. Vehicle theft, burglary/attempted burglary from vehicles are included in this reporting. Any crimes should be reported to OCS as soon as possible.

PUBLICITY AND INTELLECTUAL PROPERTY

University of Advancing Technology provides substantial University resources to its students for educational and creative uses. Students retain ownership of the works they create but grant the University a non-exclusive, royalty-free license to use, copy, display, describe, mark-on, modify, retain, or make other use of the student’s work consistent with the University’s educational mission. The University may use both the student’s likeness and the student’s work in its marketing, promotional and instructional materials.

Software and other technology resources provided to students are licensed for educational, non-commercial use only. Student work made with University resources cannot be used for commercial purposes. If a student intends to publish/sell their work, they must purchase non educational versions of software used to develop their work.

COPYRIGHT POLICY

In accordance with the Higher Education Opportunity Act of 2008, University of Advancing Technology is committed to informing the public about U.S. Copyright Law.

RESPONSIBILITIES

The University provides resources for University-related duties and responsibilities. The improper or unethical use of these resources is strictly prohibited. Unauthorized copying, downloading, uploading, sharing, installing or distributing of copyrighted material for which UAT or the end user does not have express permission to use or does not fall within Fair Use guidelines is strictly prohibited.

CONSEQUENCES

Disciplinary action may include referral to the Disciplinary Committee, and in cases of repeat offenses, action may also include loss of access to UAT networks. In addition to any University action, the copyright owner may also take further legal action against the individual concerned.

SUMMARY OF CIVIL AND CRIMINAL PENALTIES

Copyright infringement is the act of exercising, without permission or legal authority, one or more of the exclusive rights granted to the copyright owner under section 106 of the Copyright Act (Title 17 of the United States Code). These rights include the right to reproduce or distribute a copyrighted work. In the file-sharing context, downloading or uploading substantial parts of a copyrighted work without authority constitutes an infringement.

Penalties for copyright infringement include civil and criminal penalties. In general, anyone found liable for civil copyright infringement may be ordered to pay either actual damages or statutory damages affixed at not less than $750 and not more than $30,000 per work infringed. For willful infringement, a court may award up to $150,000 per work infringed. A court can, in its discretion, also assess costs and attorneys’ fees. For details, see Title 17, United States Code, Sections 504, 505.

Willful copyright infringement can also result in criminal penalties, including imprisonment of up to five years and fines of up to $250,000 per offense. For more information, please see the website of the U.S. Copyright Office at www.copyright.gov.

NOTIFICATIONS

Under the terms of the Digital Millennium Copyright Act (DMCA), the University has filed a designation of agent for notifications of claims of infringement pursuant to Section 512(c) of the Copyright Act. Any take down notices or notices of copyright infringement should be sent to the designated agent on file.
SEXUAL HARASSMENT

The University of Advancing Technology is proud of its tradition of having an environment in which all individuals are treated with courtesy, dignity, and respect. Every student, instructor and employee has the right to experience a professional atmosphere that promotes equal opportunities and prohibits discriminatory practices, including sexual harassment as defined and otherwise prohibited by state and federal law. Sexual harassment in any form by and between employees, students and campus visitors is prohibited at the University of Advancing Technology. These expectations hold true on campus, in the UAT Residence Life Community and wherever they represent the University in any capacity or when conduct is sufficiently serious to limit or deny a student’s ability to participate in or benefit from the UAT’s educational program.

Violations of the Sexual Harassment policy may result in disciplinary action up to and including termination of employees, and in sanctions up to and including suspension or expulsion of students.

DEFINITION OF SEXUAL HARASSMENT AND CONSENT

Sexual Violence is physical sexual acts perpetrated without consent and against a person’s will or where a person is incapable of giving consent (i.e., due to age, use of drugs or alcohol, incoherence, intellectual or other disability that prevents the capacity to give consent). Such acts include rape, sexual assault, sexual battery, sexual abuse and sexual coercion.

Consent is informed and freely given words or actions that indicate a willingness to participate in mutually agreed-upon sexual activities.

1. Consent may not be inferred from the following:
 > Silence
 > Passive or lack of resistance
 > A current or previous dating or sexual relationship
 > The acceptance or provision of a gift, meal, drink or other item
 > Previous consent to sexual activity

2. Consent may be withdrawn during sexual activity.

3. Consent to one form of consensual sexual activity does not imply consent to any other form of sexual activity.

4. Consent may not be given by a person who is any of the following:
 > Incapacitated by drugs, alcohol or any other substance
 > The use of drugs, alcohol or any other substance does not diminish a person’s responsibility to obtain consent and does not excuse conduct that violates policy.
 > Unconscious
 > Asleep
 > Physically or mentally unable to make informed, rational judgment
 > By virtue of age, circumstances or other factors deemed by law to be incapable of giving consent.

Sexual harassment is unsolicited and unwelcome sexual advances, requests for sexual favors, and other verbal, physical or visual conduct of a sexual nature that occurs under any of these circumstances:

1. Submission to such conduct is made either explicitly or implicitly a term or condition of a person’s employment or education.

2. Submission to or rejection of such conduct by an employee or student is used as a basis for employment or academic decisions affecting the employee or student.

3. The conduct has the purpose or effect of unreasonably interfering with a person’s work performance or otherwise creates an intimidating, hostile, or offensive work or academic performance.

EXAMPLES OF CONDUCT THAT MAY CONSTITUTE SEXUAL HARASSMENT

It shall be a violation of University of Advancing Technology’s Sexual Harassment Policy for any employee, student or campus visitor to:

> Make unwelcome sexual advances to another employee, student, or campus visitor, including direct or indirect pressure for dates or sexual activity.

> Make requests for sexual favors, whether or not accompanied by promises or threats regarding the employment or academic relationship, including salary, promotion, benefits, duties, grades, assignments, recommendations, or any other personnel or academic decisions.

> Engage in verbal or physical conduct of an implicit or explicit sexual nature that either has the purpose or effect of substantially interfering with an employee’s ability to do his or her job or a student’s ability to learn or participate in a class; or creates an intimidating, hostile, or offensive work or academic environment.

> Commit any act of sexual assault or public sexual indecency against any employee or student whether on campus or in connection with any University of Advancing Technology sponsored activity.

> Continue to express sexual interest in another employee, student or campus visitor after being informed that the interest is unwelcome. (This includes relationships that began as reciprocal attractions, but later ceased to be reciprocal.)

> Engage in other sexually harassing conduct in the workplace or academic environment, whether physical, verbal, or visual, included but not limited to environment, whether physical, verbal or visual, included but not limited to:

 > Commentary about a person’s body or body parts.
 > Sexually degrading words to describe a person.
 > Sexually offensive comments, suggestive language, jokes, innuendo or sexually suggestive books, magazines, photographs, cartoons or pictures.
 > Pinching, patting or touching.
 > Wearing of sexually offensive attire.
 > Leering or gawking.
 > Reprisals or threats after negative response to sexual advances.

> Harassment consistently targeted at only one gender, even if the context of the abusive conduct is not sexual.

> Sexual Assault: rape, statutory rape, incest and forcible fondling.

> Dating and Domestic Violence: includes, but is not limited to, sexual or physical

> Stalking (including cyber stalking): two or more acts directed at a specific person that would cause a reasonable person to fear for his or her safety or the safety of others; or suffer substantial emotional distress.

WHO IS RESPONSIBLE?

This policy covers all employees and students at the University of Advancing Technology. All persons covered by this policy must avoid offensive or inappropriate sexual and/or sexually harassing behavior at work and in the academic environment. Each employee and student is responsible for ensuring that the workplace and academic environment is free from sexual harassment.

Employees and students are encouraged to inform perceived offenders of this policy that their conduct is perceived as offensive and unwelcome.
All persons covered by this policy are encouraged (changed to shall) to report incidents of sexual harassment in a timely manner. Any form of retaliation against an individual for reporting sexual harassment truthfully to the best of their knowledge or for cooperating in an investigation of a complaint is prohibited and shall be grounds for disciplinary action. Any person covered by this policy who knowingly or recklessly makes a false accusation of sexual harassment is likewise subject to disciplinary action.

AMOROUS RELATIONSHIPS & CONSENSUAL DATING
An amorous relationship that might otherwise be appropriate in other circumstances may be inappropriate in the workplace or academic environment if one of the individuals in the relationship has a professional responsibility towards, or is in a position of authority with respect to the other, such as in the context of instruction, counseling, advisement or supervision. An element of power is often used in such a context and it is incumbent upon those with authority not to abuse that power. In any event, even consensual dating relationships among peers should not be allowed to affect the atmosphere of the workplace and academic environment, including the perceptions of others, in any way that violates this policy.

SEXUAL ABUSE
Faculty and staff of the University are in a unique position to gain the trust and confidence of students of the University. As a result, you may have information that leads you to suspect a student has been sexually abused. If you have concerns regarding a student based on information they have told you, information another student has told you or obvious signs of sexual trauma, you should report these concerns to the Title IX coordinators.

PROCEDURE
Students who experience sexual harassment in the academic environment by an employee, campus visitor or other student are urged to report such conduct to the Title IX coordinators. If the student for any reason is uncomfortable in dealing directly with Title IX coordinators, he or she should report the incident to Student Services.

Title IX Coordinators:
Dana Frasca and Martina Gizova
University of Advancing Technology
2625 West Baseline Rd., Tempe, AZ
TitleIX@uat.edu
480.351.7879

EMPLOYEES
Any University of Advancing Technology employee who experiences sexual harassment at work by a co-employee, student, or visitor is urged to report such conduct to their immediate supervisor. If the employee for any reason is uncomfortable in dealing with the supervisor, he or she should report the incident to any corporate officer.

GENERAL PROCEDURES
Persons who believe they are being sexually harassed should first notify the harasser that such behavior is unwelcome. A person who continues to be harassed should maintain a record of objectionable conduct in order to help them effectively report their allegations. Verbal reports of sexual harassment must be reduced to writing by either the victim or the persons designated to receive complaints. All reports of sexual harassment shall be promptly communicated by the recipient of the complaint to the appropriate level of management and ultimately to the corporate officers. Employees and students are encouraged (Shall) to report complaints of sexual harassment promptly so that a rapid response and appropriate action may be taken.

INVESTIGATING THE COMPLAINT
The University of Advancing Technology will endeavor to investigate all complaints as professionally and expeditiously as possible. Where investigation confirms the allegations, appropriate action will be taken.

Any allegation of sexual harassment will be confidentially investigated so as to protect the privacy of the persons involved. Confidentiality will be maintained throughout the investigatory process to the extent practical, appropriate under the circumstances, and permitted, or required by law.

The person designated to receive complaints may appoint an investigator or may elect to conduct an investigation personally. The investigation shall include as many of the following steps as are appropriate to the situation:
> Confirm the name and title of the victim
> Identify the alleged harasser
> Ascertain all facts that explain what happened
> Determine the frequency and type of alleged harassment and, if possible, the dates and locations where alleged harassment occurred
> Identify any witnesses who observed the alleged harassment
> Ask the victim how he or she responded to the alleged harassment

> Determine whether the victim reported the incident to any level of management, and determine that person’s response to the report
> Determine whether the victim or other witnesses know of or suspect that other individuals have been harassed by the alleged harasser
> Determine what action the victim would like management to take as a consequence of the harassment
> Interview the alleged harasser about the incident, reminding him or her of the prohibition against retaliation for making a complaint of sexual harassment
> Prepare a thorough factual report in writing to be used by management in resolving the complaint
> Management shall designate a designee or designees, who shall be disinterested persons, to review the results of the investigation and to determine appropriate action to resolve the complaint
> Management shall communicate its findings and intended actions to the victim and the alleged harasser. There shall be a written record of the resolution of all written complaints. A copy of the report must be forwarded to the corporate officer.

PROTECTION AGAINST RETALIATION
Retaliation against an employee or student for filing a sexual harassment complaint or participating in the investigation of a complaint is strictly prohibited. University of Advancing Technology will take appropriate disciplinary action, up to and including employment termination or academic dismissal, if evidence of retaliation exists. Likewise, if University of Advancing Technology learns that the complaint is not bona fide or that an employee or student has provided false information regarding the complaint, disciplinary action may be taken against the individual who provided the false information.

VIOLATIONS OF LAW
An employee or student may otherwise be accountable for sexual harassment under applicable local, state or federal law. Disciplinary action by University of Advancing Technology may proceed while civil or criminal proceedings are pending, and will not be subject to challenge on grounds that court charges involving the same incident have been dismissed or reduced.
STUDENT GRIEVANCE POLICY

Students who have concerns dispute or complaints about an experience at UAT must follow the UAT grievance procedure. Students have the right to file criminal complaints immediately and anytime during the process.

There are two grievance processes dependent upon the situation that a student has encountered. Students who have experienced sexual harassment, sexual assault, stalking or discrimination will follow the Sexual Assault Grievance process and will have their grievance expedited. All other grievances will follow the general grievance process.

TITLE IX GRIEVANCES—SEXUAL ASSAULT, HARASSMENT AND STALKING GRIEVANCES

Students who have experienced a sexual assault, sexual harassment or stalking need to contact the University’s Title IX Administrators via email at TitleIX@uat.edu or in person. The University’s Title IX administrators are UAT’s Dean of Student Affairs, Dana Frasca (dfrasca@uat.edu) and Martina Gizova (mgizova@uat.edu) of UAT’s Organizational Development Department. The Title IX Coordinators will connect students to resources such as academic support, counseling, disability services and mental health services.

Title IX Coordinators:
Dana Frasca and Martina Gizova
University of Advancing Technology
2625 West Baseline Rd., Tempe, AZ
TitleIX@uat.edu
480.351.7879

If a student tells any UAT employee about a sexual assault, sexual harassment or incident of stalking, the employee must immediately contact one of the Title IX administrators via email at TitleIX@uat.edu or in person.

THE TITLE IX GRIEVANCE PROCESS IS:

1. The first stage of this grievance process is for the student to bring his/her concerns to the Title IX administrator.
2. The Title IX administrator(s) will meet with the student making the claim to gain all necessary details. The authorities may be notified immediately in matters of sexual assault, stalking or sexual harassment.
3. The Title IX administrator(s) will then conduct an immediate investigation into the claims.
4. The Title IX administrator(s) will make every effort to keep the parties involved separated during the investigation. There will be interim steps to protect the complainant while an investigation is pending, which begins when an allegation of sexual violence or harassment has been reported.
5. The Title IX administrator(s) will make a determination based on interviews with all parties involved and based on police recommendations (if applicable).
6. If the student is dissatisfied with the resolution provided by the Title IX administrator provided in Step #5 and wishes to seek further resolution of his/her concerns, he/she must then submit a formal grievance to a Student Affairs coordinator who will record the date of the submitted document and deliver it to the Student Grievance Committee. Any additional documentation can be submitted at this time and must be submitted in writing. The Student Grievance Committee will meet as needed to review submitted concerns. A result of the committee’s review may include a period of investigation, but in any case, the Student Grievance Committee will notify a student who has submitted a complaint of its decision within three (3) business weeks of the meeting when the formal complaint was officially submitted.

GENERAL GRIEVANCES

Students who have concerns, disputes or complaints about an experience at UAT must follow this procedure:

Informal resolution process

1. The first stage of the University’s grievance process is for the student to bring his/her concerns to the attention of the individual most directly associated with the concern. Through email and face-to-face discussions, most matters can be resolved.
2. If discussions fail to resolve or answer the concern to the student’s satisfaction, the student shall then contact Student Affairs. Student Affairs will seek to answer and/or resolve the student’s concerns.
If informal discussions with Student Affairs are not sufficient, the formal process will be applied as follows:

3. The student must document and provide specific evidence supporting his/her grievance in writing to Student Affairs. Using this information, Student Affairs will work to resolve concerns through investigation, advocacy and any other methods he/she may deem appropriate.

4. If the student is dissatisfied with the resolution provided by Student Affairs in Step #3 and wishes to seek further resolution of his/her concerns, he/she must then submit a formal grievance to a Student Affairs coordinator who will record the date of the submitted document and deliver it to the Student Grievance Committee. Any additional documentation can be submitted at this time and must be submitted in writing. The Student Grievance Committee will meet as needed to review submitted concerns. A result of the committee’s review may include a period of investigation, but in any case, the Student Grievance Committee will notify a student who has submitted a complaint of its decision within three (3) business weeks of the meeting when the formal complaint was officially submitted. Formal complaints to be considered must contain all of the following elements:
 a. Be addressed to the Student Grievance Committee, UAT, c/o Student Services.
 b. A statement that the document is a formal complaint or grievance.
 c. The specific concerns to be addressed.
 d. Description of all the actions already taken.
 e. Specific evidence supporting the listed concerns.
 f. The student’s name, signature, address, phone number and actual date submitted to the committee.
 g. Be submitted in a timely fashion, normally within forty-five (45) days of the occurrence.

5. A student may request a rehearing of the decision of the Student Grievance Committee and appear in person to present his or her grievance. A student desiring a rehearing must file the request for rehearing within thirty (30) days of the committee’s original decision.

6. If the student complaint cannot be resolved after exhausting the University’s grievance procedure, the student may file a complaint with the Arizona State Board for Private Post-Secondary Education. The student must contact the State Board for further details.
 The State Board address is:
 1400 W. Washington, Room 260
 Phoenix, AZ 85007
 Phone: 602-542-5709
 Website: azppse.state.az.us

7. If, after exhausting this procedure, a controversy still exists, it shall be settled by arbitration of the Better Business Bureau in Phoenix, Arizona, or under the rules of the American Arbitration Association and judgment upon the award rendered by the arbitrator(s) may be entered in any court having jurisdiction thereof.

STUDENT EMPLOYMENT

UAT does not guarantee student employment and does not place students in jobs. UAT’s Career Services department is designed to assist students in their job search.
KEY TO COURSE CODES AND DESCRIPTIONS

Letters used to denote a code prefix designate the topic area or course family associated with a course (refer to Course Category and Code Prefix List for complete listing).

Letter codes are arranged alphabetically by Course Category name in the Course Descriptions section of the catalog. Three numbers are employed as a course code suffix and indicate the course’s level within its topic area. These numbers range from 100 to 699. Courses numbered between 100 and 299 are considered lower division courses. Courses numbered between 300 and 499 are considered upper division courses. Courses numbered between 500 and 699 are considered graduate level courses. All course numbers below 100 are considered preparatory and do not apply to overall credit hours in a degree program.

Prerequisite(s) indicates progression of courses. Prerequisites are met by completing the foundation course with a minimum passing grade of D (1.0) unless otherwise specified.

All General Education courses are identified within their course description by the notation GE and their area (i.e., Humanities, Social Sciences, Mathematics, Science). For example, the course ENG101 Composition is noted (GE, Humanities) because it is a General Education course in the Humanities area.
SYMBOLS
- ♻ indicates foundational courses
- 🌿 indicates skills development courses
- 🌸 indicates synthesis courses

COURSE CATEGORY AND CODE PREFIX LIST

<table>
<thead>
<tr>
<th>Category</th>
<th>Code Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art</td>
<td>ART</td>
</tr>
<tr>
<td>Astronomy</td>
<td>AST</td>
</tr>
<tr>
<td>Audio</td>
<td>AUD</td>
</tr>
<tr>
<td>Business</td>
<td>BUS</td>
</tr>
<tr>
<td>Computer Forensics</td>
<td>CFR</td>
</tr>
<tr>
<td>Computer Information Systems</td>
<td>CIS</td>
</tr>
<tr>
<td>Computer Science</td>
<td>CSC</td>
</tr>
<tr>
<td>Design Build Make</td>
<td>DBM</td>
</tr>
<tr>
<td>Digital Video and Animation</td>
<td>DVA</td>
</tr>
<tr>
<td>Entrepreneurship</td>
<td>ENT</td>
</tr>
<tr>
<td>Fitness</td>
<td>FTM</td>
</tr>
<tr>
<td>Game Art and Animation</td>
<td>GAA</td>
</tr>
<tr>
<td>Game Studies</td>
<td>GAM</td>
</tr>
<tr>
<td>Human-Computer Interaction</td>
<td>HIC</td>
</tr>
<tr>
<td>Internships</td>
<td>INT</td>
</tr>
<tr>
<td>Law</td>
<td>LAW</td>
</tr>
<tr>
<td>Management</td>
<td>MGT</td>
</tr>
<tr>
<td>Marketing</td>
<td>MKT</td>
</tr>
<tr>
<td>Multimedia</td>
<td>MTM</td>
</tr>
<tr>
<td>Network Security</td>
<td>NTS</td>
</tr>
<tr>
<td>Network Technology</td>
<td>NTW</td>
</tr>
<tr>
<td>Robotics</td>
<td>RBT</td>
</tr>
<tr>
<td>Student Innovation Project</td>
<td>SIP</td>
</tr>
<tr>
<td>Technology</td>
<td>TCH</td>
</tr>
<tr>
<td>Technology Special Topics</td>
<td>SPT</td>
</tr>
</tbody>
</table>

GENERAL EDUCATION CATEGORIES AND CODE PREFIX LIST

<table>
<thead>
<tr>
<th>Category</th>
<th>Code Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanities</td>
<td>COM</td>
</tr>
<tr>
<td>English</td>
<td>ENG</td>
</tr>
<tr>
<td>Humanities</td>
<td>HUM</td>
</tr>
<tr>
<td>Japanese Studies</td>
<td>JPN</td>
</tr>
<tr>
<td>Philosophy</td>
<td>PHI</td>
</tr>
<tr>
<td>Theater</td>
<td>THE</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MAT</td>
</tr>
<tr>
<td>Astronomy</td>
<td>AST</td>
</tr>
<tr>
<td>Biology</td>
<td>BIO</td>
</tr>
<tr>
<td>Physics</td>
<td>PHY</td>
</tr>
<tr>
<td>Science</td>
<td>SCI</td>
</tr>
<tr>
<td>History</td>
<td>HIS</td>
</tr>
<tr>
<td>Psychology</td>
<td>PSY</td>
</tr>
<tr>
<td>Social Science</td>
<td>SS</td>
</tr>
</tbody>
</table>
ART (ART)

ART103 CREDITS: 3 PREREQUISITE(S): NONE

Digital Asset Creation
This course is an overview of Adobe Photoshop and its application in creating graphical assets and collateral graphic materials. This course will cover asset creation from scratch as well as the process for using graphics in applications and on the web. The course will examine and apply the basic tools needed to function and design assets.

ART112 CREDITS: 3 PREREQUISITE(S): NONE

Graphic Design Foundational Principles
This course combines the application of color theory and introductory design principles. The function of traditional design principles incorporating color perception and color psychology give students a strong understanding of basic visual communication elements. Digital and traditional methods in design, color issues and media manipulation are covered, along with designing for an ethnically diverse international audience.

ART121 CREDITS: 3 PREREQUISITE(S): NONE

Beginning Drawing I
Is drawing a gift that has to come naturally? It is actually a skill like any other. This course will demonstrate how easily it can be learned. Drawing is as much about learning how to see and think about form and space as it is about technique. The drawing part itself is just marks on paper. Those marks come together to tell the viewer something about the world that the artist experienced. Drawing also gives one a deeper understanding of the subject being captured. As students progress through the exercises in this class, they will develop a better understanding of the forms being observed and become more skillful in representing them. Improving drawing skills on paper can improve digital drawing skills. ART121 is an introduction to basic drawing concepts and provides a basic foundation in drawing. The course emphasis will be on traditional compositional theory, drawing principles, fundamentals of observing and describing form. Students will gain a strong understanding of tonal and dimensional perspective.

ART131 CREDITS: 3 PREREQUISITE(S): NONE

Algorithmic Art
Which is more important: An artistic work that dynamically changes over time, or a finished product? Algorithmic (or generative) art is a new form of artistic creation that emphasizes the process of creating a work of art, rather than the final product. The course gives an overview of its historical perspective emphasizing the essential role of concept art as a direct precursor to algorithmic art. Students will be encouraged to make artworks that evolve over time based on a clear set of instructions and often require an active role of the viewer/participant. As a final product, students will create an interactive digital piece that fulfills the framework of the class.

ART209 CREDITS: 3 PREREQUISITE(S): ART121

Typography and Layout Design
This course is an introduction to computerized layout and typography principles. The emphasis is on the visual effects of type as a design and communication element. Students will form an understanding of the fundamental rules related to page layout and type design, the study of letter forms and the practical application of these principles through student projects. The primary focus of the instruction addresses typography used in contemporary graphic design applications. Students explore the creation of informative, experimental and expressive typographic forms by using traditional and computer-generated techniques.

ART231 CREDITS: 3 PREREQUISITE(S): ART121

Intermediate Drawing
(GE, Humanities)
Life doesn’t stand still and neither should art. This course further explores the drawing techniques established in Beginning Drawing. Students will concentrate on increasing drawing skills with respect to lighting, texture and spatial interpretation, and infusing the smoking gun aspect of lifelike action in compositions. Students will learn how to use color in drawing and to make images come to life. Individual drawing assignments and the development of a final portfolio and sketchbook will be emphasized. The Wacom Tablet will be introduced in the latter part of this course.

ART233 CREDITS: 3 PREREQUISITE(S): (ART112 AND ART121) OR GAA105

Concept Art
Students will learn to sketch, prototype and design functional creations before committing to their actual development. Concept art is a critical skill in increasing the quality and speed of production. Students will learn to craft, present and refine humanoid, animal, biological and environmental concept art that becomes the foundation for future assets.

ART234 CREDITS: 3 PREREQUISITE(S): ART121 OR GAA105

Storyboarding
This course unveils the art of visual storytelling. Storyboarding is an important skill for beginning directors to develop to pre-visualize shots and sets. It is also a critical skill in creating animation sequences and is important to the multimedia developer in planning the needs of a project. Students apply storyboarding techniques to scripts by accurately showing camera angles, placement of the actors, etc. Emphasis is placed on accuracy and presentation.

ART236 CREDITS: 3 PREREQUISITE(S): ART121

Basic Character Figure Drawing
This course explores a full range of techniques and artistic viewpoints to animate drawings. Emphasis will be on learning to sketch the human and animal forms in both stick and geometric figures studies. Students will learn the skeletal and muscular make up of the figures. Studies in the form of homework assignments will be required as well as in-class work. Long and short poses will be interspersed with exercises specifically designed to allow artists to heighten perceptions. Students will practice using the formulas for making character sketches more realistic by understanding the volumetric description and underlying structure of the human form. This course provides the most thorough experience drawing from live models.
Figure and Character Sculpting
This course offers foundational knowledge of anatomy for artists. An in-depth study of the figure is essential to an artist's understanding of the shapes, both bony and muscular, critical for achieving an accurate representation of surface anatomy. Sculpting the écorché figure in clay and completing numerous anatomical drawings, students develop a deep appreciation and understanding for the construction of the human body, which can be applied critically either directly from nature or their imagination.

Visual Communications/Graphic Design
The course explores the principles and elements of design, and challenges the student to produce creative compelling solutions for promoting a variety of products and services. The student will learn how to build brand recognition and corporate identity through individual and team projects. The course emphasizes aesthetics and visual problem solving, including typographic issues, color management, hierarchy of information and effective layout.

Art and Technology
Technology and artistic practice have always been closely linked together, from cave paintings to computers. The course will provide an overview of their intersections and overlaps throughout history, with an emphasis on the 20th century and on new technological developments and their integration in art research and production. It will unveil some art trends of more modern technological innovations such as the Internet, cyborgs, virtual reality and genetic engineering. Students will be introduced to contemporary and historical directions and methodologies through seminar lectures, research presentations and a final project.

Digital Painting
This class explores the realms of digital artistic expression using the Wacom Tablet and programs such as Corel Painter X, Photoshop and Illustrator. Students will study the traditional works of the masters and re-create them through entirely digital means. Knowledge of digital photography will be extremely helpful and necessary. Once students replicate the masters' works, they will then be free to create original designs.

3D Screen Based Typography
As projected or displayed, three-dimensional typography has unique aesthetic and design opportunities. This course will present current design principles related to 3D typography and provide students with the opportunity to create and compose with this medium.

Special Topics in Art
This course fuses the exchange of advanced conceptual ideas and practices in art; the latest trends in digital and traditional arts and the shared skill-sets necessary to complete a variety of theoretical and applied special projects. Students will be expected to do research, make observations and create exhibits culminating in oral or project oriented presentations. Class discussions will also involve current student work and proposed future trends. Students may be required to enter into regional, national, international art competitions and attend at least one major conference or class field trip, related to the course. More detailed information can be found in class syllabus. Based on this changing curriculum, students may take this course up to 3 times for credit.

ASTRONOMY (AST)

The Solar System
(GE, Science)
Introduction to the field of astronomy for the non-science major. History of astronomy; astronomy as a physical science; properties of light; telescopes; structure and evolution of the Sun, planets, moons and other bodies in the Solar System.

Stars, Galaxies and Cosmology
(GE, Science)
Introduction to the field of astronomy for the non-science major. History of astronomy; astronomy as a physical science; properties of light; telescopes; structure and evolution of stars; structure of the Milky Way galaxy and other galaxies and history of the Universe.

AUDIO (AUD)

Digital Audio Fundamentals
This course serves as a foundation for familiarizing students with the fundamentals of digital audio. Students will explore the theories and techniques necessary to record and edit sound for use in digital media. Topics covered include the perception of sound, waveform editing, digital signal processing sound effects, MIDI, voiceovers and music composition.

Audio Production for Digital Media
This course builds on the theories and techniques of Digital Audio Fundamentals by focusing on the synchronization of audio to picture. Students will take part in all aspects of audio post-production, including ADR, Foley, sound effects, ambiance and the mix. The final project will consist of a complete work in which all audio has been added in post.
BIOLOGY (BIO)

BIO120 CREDITS: 3 PREREQUISITE(S): NONE

Introduction to Biology
(GE, Science)
This course explores the basic issues of living organisms. The material covered emphasizes molecular and organic biology, as well as the structure and function of plants and animals. Learning activities include lectures, group activities and various practical exercises that help students to better understand biology and to use their knowledge in everyday life, as well as in their future careers.

BUSINESS (BUS)

BUS200 CREDITS: 3 PREREQUISITE(S): NONE

Entrepreneurship to Market
Translating technology innovations and inventions from concept to prototype to market usability requires attending to specific and established development considerations. This course provides students with currently applied frameworks associated with technology products that carry them through development and to a minimally viable state. Considerations such as foundations of cyber and information security, entrepreneurial funding sources, and market analysis will be presented and practiced.

COMMUNICATIONS (COM)

COM226 CREDITS: 3 PREREQUISITE(S): NONE

Communication in Technology
(GE, Humanities)
Students will experience expressing technology concepts to a broad audience. Students will learn best practices in presenting technology products and pitching concepts using business-appropriate communication skills. Effective use of voice, nonverbal skills and visuals will be applied to topics such as robotics, virtual reality, animation, digital video, network security and others. Presentations include peer-to-peer feedback in student-led discussions. In addition, students will have the opportunity to create a resume and be mock interviewed for a technology position.

COMPUTER FORENSICS (CFR)

CFR101 CREDITS: 3 PREREQUISITE(S): NONE

Computer Forensic Essentials
This course covers the essentials of computer forensic investigations and the evolution of computer forensics. It will explain various modes of attack, examples of cyber crimes, the reasons for cyber attacks, the role of computer forensics in tracking cyber criminals and computer forensics methodologies. The documentation created during this course can be added to the student’s portfolio.

CFR105 CREDITS: 3 PREREQUISITE(S): CFR101

File Systems and Structures
A firm grasp of basic file systems and structures is a key to the success of a forensic investigator. This course provides an overview of fundamental file structure concepts. This is the foundation of knowledge for file systems and structures that will be the cornerstone for understanding future forensics courses. The documentation created during this course can be added to the student’s portfolio.

CFR225 CREDITS: 3 PREREQUISITE(S): CFR105

Operating System Forensics
This course will provide the skills, tools and knowledge necessary to choose the proper tool in order to examine various operating systems. It will explore operating systems from a forensics point of view. Topics covered in this course include examining Windows, UNIX, Linux and Mac operating systems with a key focus on areas of persistence, malware locations and important data locations for each OS. The course will guide students through the popular forensic tools used with each operating system and case examples. The documentation created during this course can be added to the student’s portfolio.

CFR227 CREDITS: 3 PREREQUISITE(S): CFR225

Malware Detection and Analysis
This course provides the skills necessary for students to find, analyze and categorize zero day malware compiled for specific attacks/victims. The course uses actual malware and a variety of tools currently used by practitioners. The course focuses on real-world examples of malware utilizes by the Advanced Persistent Threat (APT), the affect on the enterprise and methods for mitigations. The documentation created during this course can be added to the student’s portfolio.

CFR230 CREDITS: 3 PREREQUISITE(S): CFR101

Investigative Techniques
Forensic sleuthing can involve using some highly creative methods to find the evidence in a case. This course will explore the methods that can be used to solve digital forensic mysteries. It will also train students to use sound methods so all evidence collected during an investigation will be admissible and reliable in court.
CFR235 CREDITS: 3 PREREQUISITE(S): CFR105

Mobile Device Forensics
Evidence can be found on handheld devices such as cell phones and tablets. This course will provide the skills, tools and knowledge necessary to seize, image, examine and build cases for handheld devices. It will explore the latest mobile phone technologies, flash memory and along with the tools that can be used to extract information from these devices. The documentation created during this course can be added to the student’s portfolio.

CFR315 CREDITS: 3 PREREQUISITE(S): NONE

Video Forensics
This course will cover the process of Forensic Video Analysis. It will explain the make up of CCTV systems, the optimization of these systems, and the recovery of evidence from CCTV along with the processing of video and image evidence, including authentication. Finally, the creation of reports and testimony will be the same as students will face when becoming certified Forensic Video Analysts. The documentation created during this course can be added to the student’s portfolio.

CFR410 CREDITS: 3 PREREQUISITE(S): CFR101, NTW216

Network Forensics
Today’s enterprises implement a variety of equipment within their infrastructures. A successful computer forensic candidate must have the skills necessary to understand topologies and protocols. This course will provide the skills, tools and knowledge necessary to identify and gather evidence on a network. The documentation created during this course can be added to the student’s portfolio.

CFR420 CREDITS: 3 PREREQUISITE(S): CFR105

Advanced Forensics
This course covers advanced forensic topics such as router, application and database attacks. Everything needed to complete complex investigations will be explored, as well as advanced data recovery methods. Advanced Forensics will provide the necessary skills to become one of the top computer forensic investigators on the market today.

CFR470 CREDITS: 3 PREREQUISITE(S): CFR105

Corporate and Business Issues in Digital Forensics
This course covers aspects being dealt with in human resource management (protection/investigation of data related to HR operations), eDiscovery (data collection and attribution for legal processes) and intrusions/criminal activities. Topics will reflect actual issues facing businesses globally utilizing real malware, incidents and tools used by practitioners. The documentation created during this course can be added to the student’s portfolio.

COMPUTER INFORMATION SYSTEMS (CIS)

CIS100 CREDITS: 3 PREREQUISITE(S): NONE

Beginning Web Design
This course lays the foundation for web design and coding by teaching students how to create and maintain static websites. Students will design web pages using HTML and CSS in conformance with current and future web standards, learn the basic underlying concepts of HTML page structure and content, CSS styling and rendering of web pages, be introduced to usability and information design principles and have a functioning website by the completion of the class. They will also learn about server technologies, the fundamentals of HTTP and FTP, and how search engines work.

CIS120 CREDITS: 3 PREREQUISITE(S): NONE

Web and Social Media Technologies
This course looks at current trends, case studies and research on the creation of utilization of web and social media technologies and practices. Students will be immersed in the development concerns, strengths and weaknesses of the social web and social-based websites. Students will take away the concepts of how social media is implemented.

CIS210 CREDITS: 3 PREREQUISITE(S): NONE

Linux I
This course provides an overview of the commands, utilities and supporting architecture used in Linux operating systems. This course provides the student with skills such as system and application installation, shell scripting, regular expressions, system management, web services installation and maintenance.

CIS240 CREDITS: 3 PREREQUISITE(S): CIS100, CSC102

Building Dynamic Websites I
This is an intermediate course in client-side coding of enhanced dynamic websites, incorporating the use of HTML/CSS, JavaScript and AJAX. In this class, students will build functional websites that exhibit professional site planning, design and development. Students will learn how to use current web development software and an integrated development environment (IDE) to support coding.
Building Dynamic Websites II

This is an advanced course in server-side coding of enhanced dynamic websites, incorporating the use of HTML/CSS, JavaScript, JQuery, and PHP. Students will learn the concepts of server-side database connectivity to relational database management systems. A survey of the technology of the emerging field of Big Data will be undertaken. In this class, students will build functional dynamic websites that exhibit professional site planning, design and development. Students will continue to learn how to use current web development software and an integrated development environment (IDE) to support coding.

Best Practices in Web Production

Is your website as effective as it needs to be? Does it send the right message? Does it utilize appropriate technologies? Can your prospects ever find it? Who is your audience? Does your online portfolio address your strengths and communicate your unique design to your future employer? This course will address best practices in web design and development, will critique professional sites as well as the students’ and will provide specific recommendations to strengthen your site and maximize your investment. The class is also designed to guide students through the processes of creating their own effective online portfolio by identifying strengths and weaknesses of a site, discussing how to approach a web redesign, how to approach site structure and information architecture.

COMPUTER SCIENCE (CSC)

Introduction to Programming

The purpose of this course is to introduce the fundamentals of computer science and programming to students majoring in this area. Students will become familiar with problem solving techniques and algorithm development using computers, including a structured high-level programming language. Students will also explore object-oriented programming including the design considerations and conventions used in development of object-oriented applications. Topics will include flow of control, assignment, arrays, functions, and input and output, among others.

C# Programming I

C# is a general purpose, object-oriented programming language suited for all types of development. This course presents the entire language and gives an introduction to the Base Class Library (BCL) to the student. Students will learn the syntax, keywords and constructs, as well as how to leverage the resources of the BCL. This is a project-based class and students will develop applications with C# using real world tools and practices.

Java Programming I

Java is a general purpose, object-oriented programming language suited for all types of development. This course presents the entire language and the standard libraries to the student. Students will learn the syntax, keywords and constructs, as well as how to leverage the resources of the standard libraries. This is a project-based class and students will develop applications with Java using real world tools and practices.

Introduction to Databases

This course will introduce students to the commands, architecture and applications of structured query language (SQL). Topics will include access and manipulation of databases, tables, views, indexes, data transformations and internal data structures. Students will create databases, tables, triggers and stored procedures.

C/C++ Programming I

C++ is a general purpose programming language that supports object-oriented programming and is suited for all types of development. This course presents the entire language and the Standard Template Library (STL) to the student. Students will learn the syntax, keywords and constructs, as well as how to leverage the resources of the STL. This is a project-based class and students will develop applications with C++ using real world tools and practices.

C# Programming II

This course focuses on the craft of software. Students will build upon their previously acquired programming and language fundamentals and develop additional skills essential for crafting high quality and maintainable software. This is a project-based class and students will apply C# and real world tools and practices to solve common programming problems involving advanced object-oriented programming with design patterns, shared code (DLLs), graphical user interfaces, multi-threading, network I/O and relational databases.
Java Programming II
This course focuses on the craft of software. Students will build upon their previously acquired programming and language fundamentals and develop additional skills essential for crafting high quality and maintainable software. This is a projects-based class and students will apply Java and real world tools and practices to solve common programming problems involving advanced object-oriented programming with design patterns, shared code, graphical user interfaces, multi-threading, network I/O, and relational databases.

C++ Programming II
This course focuses on the craft of software. Students will build upon their previously acquired programming and language fundamentals and develop additional skills essential for crafting high quality and maintainable software. This is a projects-based class and students will apply C++ and real world tools and practices to solve common programming problems involving advanced object-oriented programming with design patterns, advanced Standard Template Libraries, and dynamic memory management including smart pointers, shared code, multi-threading and network I/O.

Operating Systems Theory
This course explores operating system structure and services through the development of an operating system on a complex embedded system. Topics include processor scheduling, concurrent processes, synchronization techniques, memory management, virtual memory, input/output, storage management and file systems.

Software Engineering Principles
This course introduces formal application development processes. Students will apply a selected Agile-style development process utilizing UP/UML. Students will produce a substantial application produced for real customers by following an Agile-style development process with all of the appropriate documentation. Students will work in teams of no more than three people.

Mobile Platform Software Development
As the smartphone and mobile device market increases, so does the need for mobile platform software developers. This class will focus on the nuances of developing for mobile systems, including topics such as Android and iPhone development environments, GUI design for mobile devices, messaging protocols and application of streaming data sources.

Big Data Essentials
This course will introduce the basics of Big Data. It will define Big Data and the types of systems that are often used with Big Data. Some of these systems will be covered in detail along with their respective advantages and disadvantages. Finally, we will cover how Big Data is used in business to create data products. This course teaches Big Data tools such as Hadoop, R, and NoSQL. It provides an introduction to cloud technologies. Artificial life algorithms and data mining concepts are introduced.

High Performance Embedded Systems
High performance embedded systems can provide a low cost development platform for software and hardware developers and they can help fuel the creativity and innovation of the maker community. This class will provide exposure to development an embedded platform and operating system where learners can have fine-grained control of the software, hardware and communications. The Internet of Things will be researched, discussed, and software and hardware development associated with the Internet of Things will be explored. Learners will investigate software and hardware development communities and make meaningful contributions to them.

Software Quality Assurance
Key aspects of software production are the reliability and robustness of the application. Topics covered in this course include a thorough discussion of the function of the software quality assurance of a software development, the use of metrics, auditing, reviews, standards and audit of configuration management. Students will additionally be exposed to techniques associated with developing code that is efficient and secure.

Artificial Life
This course provides a survey of programming methodologies that are inspired by living systems. Students will learn about cellular automata, evolutionary algorithms, agent based models, neural networks and other related topics. This is a project-based class and students will apply artificial life techniques and develop software using real world tools and practices.

Artificial Intelligence
This course surveys artificial intelligence (AI) techniques, theories and applications such as knowledge representation, searching, expert systems and machine learning. Modern AI research is concerned with producing useful machines to automate human tasks requiring intelligent behavior.
CSC382 CREDITS: 3 PREREQUISITE(S): CSC275, MAT250

Data Structures and Algorithms
This course explores the specification and implementation of containers as abstract data types. Structures covered include strings, vectors, stacks, queues, sequential lists, binary trees, hashes and graphs. The course also investigates algorithm design and evaluation, such as sorting, search, recursion and algorithmic analysis. Students will use concepts from calculus within this course.

CSC406 CREDITS: 3 PREREQUISITE(S): CSC382

Special Topics in Artificial Life
This course provides an in-depth exploration of one area of artificial life programming. The area explored may be cellular automata, evolutionary algorithms, agent-based models, neural networks, or another related topic. This is a project-based class and students will apply artificial life techniques and develop software using real world tools and practices.

CSC413 CREDITS: 3 PREREQUISITE(S): CSC211 AND CSC382 AND (CSC262 OR CSC263 OR CSC275)

Advanced Software Development I
This course will introduce students to advanced Web 2.0 development using open source frameworks. Extensive use will be made of Object to Relational Frameworks to store and retrieve data in relational databases in an efficient fashion. Modern JavaScript frameworks such as Scriptaculous or jQuery will be used. Students will use modern continuous integration techniques using tools such as Maven, NMaven, Continuum, etc.

CSC445 CREDITS: 3 PREREQUISITE(S): (CS262 OR CS263 OR CSC275) AND CSC211 AND CIS340

Advanced Web Programming
Introduction to web frameworks, such as Ruby on Rails. Installation of development frameworks. Configuration of web server and distributed database management systems environments. Software architecture patterns such as Model-View-Controller (MVC). Database-backed web applications, output display, and data validation paradigms.

CSC453 CREDITS: 3 PREREQUISITE(S): CSC413

Advanced Software Development II
This course will extend students’ knowledge of advanced Web 2.0 development using open source frameworks. Students will build on their current skills by developing loosely coupled applications using web services, integration with current mobile development platforms using both browser-based and native mobile applications. Much focus will be placed on the deployment aspects of application development, including performance monitoring, security issues and application monitoring.

DESIGN BUILD MAKE (DBM)

DBM100 CREDITS: 3 PREREQUISITE(S): NONE

3D Build Tools
A component of creating tools, products and inventions is generating three-dimensional models that incorporate physical traits of the materials to be used. This course instructs students in software tools used within industry to build digital models that incorporate and provide feedback on design constraints based upon materials and intended applications.

DBM150 CREDITS: 3 PREREQUISITE(S): NONE

Introduction to Maker Studio
Ideas evolve much more easily towards application when they are given a physical form. Maker style technologies and techniques provide tools and pathways for designers from any of UAT’s programs to rapidly create versions of their ideas. Intended for non-majors, this course provides an introduction into the use of the most common entry-level maker equipment to create props and functional prototypes.

DBM215 CREDITS: 3 PREREQUISITE(S): DBM100

Prototyping Tools and Practices
This course focuses on creating functional prototypes from digital models using a variety of tools, techniques and materials as students explore the process of taking an idea from conception to a functional state. Students in this course will learn to use a variety of maker style tools representing differing levels of complexity to generate complex prototypes. Prototypes will be based on 3D models, where materials, their properties and their functional relationships with each other as a part of a working model play key roles in design decisions.

DBM240 CREDITS: 3 PREREQUISITE(S): (DBM215 AND RBT173) OR RBT307

Electromechanical Devices
Articulated and mobile devices depend upon electromechanical components for their functionality. This course provides students an overview of electromechanical devices, their appropriately matched applications and then gives students opportunities to incorporate them into project builds.

DBM330 CREDITS: 3 PREREQUISITE(S): DBM150 OR DBM215

Maker Studio I
In this studio course students will be given complex build projects and then learn innovative build and test techniques used to swiftly prototype innovative designs.
Wearable Technologies
Integrating digital technology that incorporates computing, display and Internet connectivity and is worn by humans is a rapidly emerging area of technology interest. In this course, students will learn current technology trends and capacities for wearable technology and apply them in completed projects.

Maker Studio II
In this studio course, students will practice innovative build and test techniques on more complex projects as they complete innovative designs using a range of material, electronics, software and electromechanical components.

DIGITAL VIDEO AND ANIMATION (DVA)

Digital Video Fundamentals
This course familiarizes students with digital video production equipment while immersing them in the basic aesthetics of motion picture production. Hands-on projects involve scripting, storyboarding, camera work, continuity, 3-point lighting, sound recording and basic video editing. Students work in groups to complete various technical exercises that familiarize them with terms and equipment while preparing them to produce complete digital video works.

Lighting and Environment Design
This course introduces the student to the theories and techniques used in lighting and scene design when creating a setting for digital video, animation or game projects. Script analysis and interpretation may be used to teach the principles of style, form and balance in scene design. Lighting subjects include the psychological effects of light and color. Students will be introduced to the basic lighting elements of visibility, selective focus, modeling and imparting mood to a scene.

Movie Theory
Ever wonder why some movies feel different from others? This class will reveal the secrets. This course introduces the concepts and practices associated with how the written word is translated into visual language. During this course, students will have the opportunity to learn the art and theory behind motion pictures, including how lighting and cameras are used to create emotion, setting and dramatic emphasis. Topics include shooting styles, lighting, camera angles, continuity, composition and cutting techniques. Technical innovations in cameras, filters and lenses will be explored.

Special Effects and Character Makeup
In this highly collaborative setting, students will learn makeup techniques for use in digital video and as a basis for facial animation. Basic corrective, old age and fantasy makeup techniques will be used as building blocks for character and effects makeup. Effects may include burns (gelatin build-up), scars, bleeding wounds and monster faces using wax and/or latex build-up.

Introduction to Directing and Producing
Action! This course will introduce the student to the collaborative world of directing and producing. Students will examine where and to what extent animation can be incorporated into the production. The director’s approach to text analysis and articulation of ideas for interpreting and critiquing scripts and storyboards will be explored in developing an overall vision for a production. The producer’s role of analyzing text for location scouting, budget and logistics will be examined. The course will also take the student through the basic tools of casting, scheduling and time management.

Digital Video Production
Continuing the concepts begun in DVA101, this course introduces students to more advanced digital video production equipment and techniques, and emphasizes the production of complete works. Working in teams, students will produce various projects, including music videos, documentaries and short films, while also exploring additional aesthetic concepts such as depth of field, camera movement, and advanced lighting and sound. A greater emphasis is also placed on the pre-production stage for each type of project.

Motion Graphics
From Saul Bass to Kyle Cooper... from Psycho to Se7en... and onward to every commercial in recent memory... Motion Graphics is the art and science of using design as a storytelling tool. Using text, images, graphic elements, animation, camera movement and music, students will explore the concepts, aesthetics and techniques that shape this fast-growing and ever-changing field. Practical exercises throughout the course are designed to develop software competency and assist students in building portfolio-quality complete works.

Digital Photography
Continuing the photographic principles begun in DVA241 Digital Video Production, this class concentrates on camera technology (lenses, sensors, ISO, depth of field, compression, digital media, color spaces, camera form factors and accessories) as well as technique (exposure, composition, color, contrast and more). With an emphasis on sculpting beautiful images—both still and in motion—this course trains students to become digital photographers, camera operators and camera assistants.

Digital Video Editing
Editing is the final rewrite—the last explosion of creativity that shapes what a viewer ultimately sees, hears and feels when watching a film. In this course, students explore the aesthetic development of this crucial cinematic art through film clips, readings, writing assignments and class discussions, while also completing practical exercises on industry-standard digital video editing software. Students are encouraged to collaborate with students in DVA241 to complete several projects, including music videos, documentaries and short films.
DVA310 CREDITS: 3 PREREQUISITE(S): DVA110

Lighting and Environment Design II

Continuing the principles begun in DVA110 Lighting and Environment Design, students will design environments for a variety of digital video and game projects and will execute their designs via mixed media projects that include some or all of the following: 3D modeling and texturing, practical model making, set construction and painting, lighting, photography, digital image manipulation and color grading.

DVA320 CREDITS: 3 PREREQUISITE(S): NONE

3D Materials, Lighting and Rendering for Film and Video

This course provides students with practice in the techniques of materials, lighting, and rendering in Max and Maya specifically in support of their digital video project requirements.

DVA323 CREDITS: 3 PREREQUISITE(S): DVA238 OR DVA320 OR DVA334 OR DVA335 OR DVA353 OR DVA371 OR GAA320 OR THE330

Digital Video Production Studio I

The future of filmmaking is digital—virtual sets, computer-generated characters and live-action actors photographed on a green screen, all integrated together through matchmoving and compositing. In this course, students bring to bear all their skills in the various areas of editing, camerawork, animation, compositing and more to produce a complete work that exemplifies this new mode of making moving images. This is the ultimate portfolio-building course!

DVA334 CREDITS: 3 PREREQUISITE(S): DVA234

Special Effects and Character Makeup II

Building on the skills taught in the previous course, students will develop makeup techniques used in their digital video productions related to facial and body makeup. The use of prosthetics and animatronics will be more deeply practiced.

DVA335 CREDITS: 3 PREREQUISITE(S): DVA360 OR DVA310

Digital Video Cinematography

This course will expose the student to the tools and techniques that will allow them to light a variety of stories. Students may use light kits, gels and filters to produce 3-point lighting and soft or hard lighting, and craft an array of different settings. Different styles of motion picture lighting will be analyzed and the student will have the opportunity to recreate the lighting used in specific scenes.

DVA353 CREDITS: 3 PREREQUISITE(S): DVA241

Visual Effects Compositing

Compositing is defined as the combination of two or more images into one final image. Students will explore the art, science and history of visual effects compositing from its earliest, celluloid-based origins through its most recent digital implementations in film and video production. Practical exercises throughout the course are designed to develop software competency and assist students in building portfolio-quality complete works.

DVA354 CREDITS: 3 PREREQUISITE(S): DVA254

Advanced Motion Graphics

This course continues concepts begun in DVA254 Motion Graphics with an emphasis on completed works that integrate animation, 2D design, 3D graphics, live-action video, audio and more. Students will create motion graphics projects for use in websites, films, TV commercials and other digital video productions.

DVA371 CREDITS: 3 PREREQUISITE(S): DVA274 RECOMMENDED: DVA130

Advanced Digital Video Editing

This is where editing theory turns to practice, practice, practice, where the editing rules learned can be bent or even broken, where the challenge is to become an editor with a unique style and a singular voice. Through the exploration of additional software and hardware tools and through practical hands-on projects, students in this course develop the skills to become professional digital video editors and to produce portfolio-quality works.

DVA451 CREDITS: 3 PREREQUISITE(S): DVA353

Advanced Visual Effects

Building upon the concepts introduced in DVA353, this course enables students to further develop their skills as visual effects compositors. Through practical exercises, research and experimentation, students will explore the planning and production of photorealistic visual effects shots and will employ various methods such as chroma keying, traveling mattes, miniature photography, pyrotechnics, computer-generated imagery, matchmoving, camera tracking and more. Students will produce several portfolio-quality visual effects shots. A background in computer animation is helpful but not mandatory.

DVA492 CREDITS: 3 PREREQUISITE(S): DVA323

Digital Video Production Studio II

In this follow-up to Digital Video Production Studio I, students once again produce a complete work that synthesizes all the skills and knowledge acquired throughout their studies. Students in Digital Video Production Studio II serve as the project leads and department heads, overseeing a crew of students in the concurrent Digital Video Production Studio I.

DVA493 CREDITS: 3 PREREQUISITE(S): DVA492

Digital Video Production Studio III

In this follow-up to Digital Video Production Studio I and II, students once again produce a complete work that synthesizes all the skills and knowledge acquired throughout their studies. Students in Digital Video Production Studio III serve as the project leads and department heads, overseeing a crew of students in the concurrent Digital Video Production Studio I and II.

DVA494 CREDITS: 3 PREREQUISITE(S): DVA493

Digital Video Production Studio IV

In this follow-up to DVA493 Digital Video Production Studio III, students will complete the projects they began back in Production Studio I and take them to market – either via web distribution, theatrical screenings or film festival submissions. The marketing component of a film project will be the focus of the course, including trailers, posters, promotional material, social media, audience building, community engagement and more.
ENGLISH (ENG)

ENG101 CREDITS: 3 PREREQUISITE(S): NONE
Composition I
(GE, Humanities)
This course is designed to present effective techniques in organizing, developing and writing academic essays that reflect a collegiate level of writing. The purpose of this course is to help students write correctly, clearly and thoughtfully. Students will receive an introduction to basic writing, thinking and reading skills required for success in college, with emphasis on fluency in analytical, rhetorical and creative non-fiction presentation.

ENG102 CREDITS: 3 PREREQUISITE(S): ENG101
Composition II
(GE, Humanities)
ENG102 is designed to introduce students to the essential language, theories and strategies of argumentation and research. The purpose of the course is to provide students with the tools necessary to develop arguments for specific audiences within specific rhetorical situations. Students will also develop their critical reading skills: analyzing, evaluating and critiquing the claims and evidence used by various authors. Finally, students will learn proper research skills and write an in-depth research essay/project.

ENG215 CREDITS: 3 PREREQUISITE(S): ENG101
Topics in Creative Writing
(GE, Humanities)
This course teaches the principles that result in effective original work: the creation of characters, plots, visual imagery and effective dialogue. Students are also expected to be able to provide constructive criticism to others. Students will be expected to produce original work as a final project.

ENG301 CREDITS: 3 PREREQUISITE(S): ENG102
Technical Writing
(GE, Humanities)
Effective professional communication is critical in the business environment, and can take the form of email, memorandum, user’s manual, developer documentation or laboratory report. This course focuses on developing writing skills for technical audiences, emphasizing professional writing style, clarity, and presentation of information. Students will analyze, develop and critique a variety of technical documents in order to practice and understand the role of the technical writer.

ENG305 CREDITS: 3 PREREQUISITE(S): ENG102
Mythology, Fable and Fairy Tale
(GE, Humanities)
This course will explore various definitions of myth, compare and contrast various mythologies from around the world and examine the ways myths have evolved over time. We will also study the mythological roots of the fairy tale, compare and contrast fairy tales from around the world, and explore how fairy tales have changed over time.

ENG310 CREDITS: 3 PREREQUISITE(S): NONE
Science Fiction as Literature
(GE, Humanities)
This course will delve into selected readings in the literature of science fiction to show how the genre of science fiction has evolved from the dark fantasy narratives of the 19th century through the start of the 21st century. Students will examine key genre texts from the worlds of print, cinema and the web.

ENG330 CREDITS: 3 PREREQUISITE(S): NONE
Crime Literature
(GE, Humanities)
Crime Literature provides a survey of selected topics within the literature, cinema, and high-profile criminal cases of selected eras between the late Victorian era and the modern era. Texts and multimedia include Sherlock Holmes stories, And Then There Were None by Agatha Christie, film noir masterpieces, television procedurals, and contemporary thrillers. Emphasis will be placed on important themes, authors, and texts of the genres of mystery, crime fiction, and detective stories.

ENG415 CREDITS: 3 PREREQUISITE(S): ENG102
Selected Topics in Literature
(GE, Humanities)
This course is designed to explore a defined area of literature, including individual authors, literary movements, issues in popular culture and various genres. The in-depth study may include works from both Western and non-Western cultures. Contents and methods vary with instructors and from semester to semester.

ENTREPRENEURSHIP (ENT)

ENT200 CREDITS: 3 PREREQUISITE(S): NONE
Introduction to Business and Entrepreneurship
The course will address the fundamentals of starting and running a business. It will be an overview of successful strategies for transforming ideas into profitable products. Strategies for growth, licensing, direct investment and joint ventures will also be central to the course. Attention will be given to cultural, social, political and economic complexities and their implications on the firm.

ENT305 CREDITS: 3 PREREQUISITE(S): ENT200
Entrepreneurial Operations
This course focuses on the research, planning and operation of an entrepreneurial venture. Students will explore the benefits of utilizing research and planning resources such as SBA, SCORE, IRS, Census Bureau, Bureau of Economic Analysis and Bureau of Labor Statistics. Financial topics will include acquiring start-up capital, budgeting, forecasting, accounting, taxes, insurance and maintenance of business records. In addition, this course will provide an overview of human resource operations.
Business Planning for Entrepreneurs

One of the most important cornerstones of starting a business is the business plan. This capstone course will help students create a focused, well-researched business plan with all its essential ingredients that should serve as a blueprint. It should detail how the business will be operated, managed and capitalized. Topics will include creating and communicating vision, mission, goals and objectives. Additional topics will include business names, licensing, legal structures, incorporation, location and resources. Students will focus on both strategic and tactical planning while emphasizing creating and continuously enhancing an overall management system to guide the entrepreneurial venture as it grows.

FITNESS (FTN)

FTN201 CREDITS: 1 PREREQUISITE(S): INSTRUCTOR APPROVAL
Special Topics Elective
This course will explore a special topic in a field otherwise not related to University programs. Subjects tend to relate to the particular cultural interests of the student community. Past Special Topics courses have included swordplay, yoga and martial arts.

FTN202 CREDITS: 2 PREREQUISITE(S): INSTRUCTOR APPROVAL
Special Topics Elective
This course will explore a fitness special topic in a field otherwise not related to University programs. Subjects tend to relate to the particular cultural interests of the student community.

FTN210 CREDITS: 1 PREREQUISITE(S): NONE
Yoga
Balance mind and body while increasing strength and flexibility. This physical education course is geared toward giving the student an opportunity to calm their busy minds through slow and deliberate body movements and development of breath control. Yoga is suitable for all body types as part of the experience is learning to listen to the wisdom of the self. The course may be taken multiple times.

FTN211 CREDITS: 1 PREREQUISITE(S): NONE
Swordplay
The purpose of this course is to provide an overview exposure to competition and recreational swordplay. The work will in part be aimed at the development and enjoyment of physical skills in working with a variety of sword and martial art equipment and learning the basic techniques of movement, attacks, parries and drills.

Advanced Swordplay
The purpose of this course is to provide an advanced exposure to competition and recreational swordplay. Students will be required to attend one competition in the Phoenix area. Coursework will in part be aimed at the development and enjoyment of physical skills in working with a variety of sword and martial art equipment. Students will learn the basic techniques of movement, attacks, parries and drills. This course will also focus on historical swordplay and theatrical swordplay. Choreographed skits will be a major element of this class.

GAME ART AND ANIMATION (GAA)

GAA105 CREDITS: 3 PREREQUISITE(S): NONE
Game Art and Animation Fundamentals
Game Art and Animation is built on a foundation of drawing, graphic design and art. This course is designed to build that foundation allowing the student to build a base of visual communication and artistic theory. Concentrations on composition, color, drawing, observation and traditional design allow the student to develop a personal aesthetic and style linked to sound artistic principles. This course uses both traditional and digital techniques create a basis for Game Art and Animation projects.

GAA110 CREDITS: 3 PREREQUISITE(S): GAA105 OR (ART112 AND ART121) COREQUISITE(S): ART233
Introduction to Game Art and Animation
This course introduces the student to industry-standard 3D game art and animation for video games. Students will recognize, differentiate, analyze, and create game art assets that are used in 3D game projects. Areas of emphasis include: game art, concept, box modeling, UV unwrap, texturing, rigging, animation, rendering, and development of an online portfolio.

GAA220 CREDITS: 3 PREREQUISITE(S): GAA110 RECOMMENDED: ART234
3D Modeling Environments and FX
This class will explore modeling game environments and special effects using different industry standard modeling procedures and will discuss when each is appropriate. Students will study organic and hard surface modeling. Areas of emphasis include: sculpting tools, box modeling, Boolean, lofting, modifiers and deformers. Students will complete exercises that build toward a final project.

GAA230 CREDITS: 3 PREREQUISITE(S): GAA110 RECOMMENDED: ART233
3D Modeling Characters and Vehicles
This course will explore modeling game characters and vehicles using various industry standard modeling procedures and will discuss when each is appropriate. Students will study organic and rigid surface modeling techniques and pipelines. Areas of emphasis include: Polygon, Sub-division, and NURBS surfaces with sculpting tools, box modeling, extruding, lofting, modifiers and deformers. Students will complete exercises that build toward a final project.
GAA240 CREDITS: 3 PREREQUISITE(S): GAA110

COREQUISITE(S): GAA220, GAA230

Game Texturing

This course focuses on the creation of textures for digital games. Students will learn how to create consistent and efficient texture maps from scratch as well as from photo references. Proper mapping and application procedures will also be reviewed. Assignments will help students build their own texture library in order to increase their production speed.

GAA230 CREDITS: 3 PREREQUISITE(S): GAA220

RECOMMENDED: GAA240

Environmental and FX Animation

Students will develop capacity in the process of environmental and special FX animation techniques needed for current game animation trends. The utilization of particle systems and game engine import/export strategies will be addressed. The development of common and custom animations for dynamic level objects and game environments will be emphasized. The use of physics-based, dynamic animation systems will also be explored in this course.

GAA320 CREDITS: 3 PREREQUISITE(S): GAA220

RECOMMENDED: GAA240

Characters and Vehicles Animation

This course will introduce basic rigging and animation principals and techniques for 3D character and vehicle models. Students will learn fundamental rigging and animation toolsets using industry standard tools. Course topics include: custom bone setup, IK/FK, constraints, and keyframing, looping cycles and spline animation. Students will rig and animate a character and vehicle which they created in a previous modeling course.

GAA330 CREDITS: 3 PREREQUISITE(S): GAA230

RECOMMENDED: GAA240

UI Design and Animation

This course will build on the student’s skills in creating interactive and visually compelling menus and HUDs as seen in today’s high-profile titles. The student will script design solutions and problem solve communication issues using industry standard 2D and 3D UI animation software and scripting tools. Assignments will emphasize the visualization and creation of interface transitions with stylish animation.

GAA340 CREDITS: 3 PREREQUISITE(S): GAA210

Advanced Game Environment Creation

Current AAA games feature amazing environments that drip with atmosphere and stunning interactive details. Throughout this course students will research the latest trends in level modeling and apply their skills in the development of advanced architectural and organic models needed for current game development. Assignments will lead the student to create a complete game environment that is ready to add to their portfolio.

GAA350 CREDITS: 3 PREREQUISITE(S): GAA230

Advanced Character Rigging and MoCap Animation

Students will learn the importance of good planning and problem solving as they relate to character design for 3D animation. Course topics will cover character setup, inverse kinematics, joints and bones, deformers, set-driven keys, bipedal and quadruped setups. Students will be immersed in hands-on motion capture exercises and explore advanced techniques for blending actions and mapping data to multiple characters. Students will create a fully functional character rig and apply animation to it.

GAA360 CREDITS: 3 PREREQUISITE(S): GAA110

UI Design and Animation

This course will build on the student’s skills in creating interactive and visually compelling menus and HUDs as seen in today’s high-profile titles. The student will script design solutions and problem solve communication issues using industry standard 2D and 3D UI animation software and scripting tools. Assignments will emphasize the visualization and creation of interface transitions with stylish animation.

GAA420 CREDITS: 3 PREREQUISITE(S): GAA320

Advanced Game Character Creation

Never in the history of game development have characters and vehicles been so realistic in appearance. Students will explore and apply techniques to create hyper realistic game characters, creatures and vehicles used for Triple-A titles. Tools come and go; the essence of what makes a great character modeler is artistic knowledge and a critical artistic eye. Anatomy, anthropomorphic creature construction and automotive design are emphasized during this course.

GAA430 CREDITS: 3 PREREQUISITE(S): GAA330

Advanced Materials, Shaders and Lighting

Students will explore procedural and non-procedural materials, textures and shaders as they immerse themselves in the creation of natural surfaces for game engines. Proper lighting techniques for game environments and advanced material shaders will be examined. The application of advanced materials and specialized mapping techniques in order to achieve realistic surfaces for game art assets will be emphasized.

GAA440 CREDITS: 3 PREREQUISITE(S): GAA330

Advanced Materials, Shaders and Lighting

Students will explore procedural and non-procedural materials, textures and shaders as they immerse themselves in the creation of natural surfaces for game engines. Proper lighting techniques for game environments and advanced material shaders will be examined. The application of advanced materials and specialized mapping techniques in order to achieve realistic surfaces for game art assets will be emphasized.

GAA450 CREDITS: 3 PREREQUISITE(S): GAA420

Industry Professional Development

This course completes the innovative style and generalist/specialist portfolio process providing guidance and structure for the formal presentation of the students work. Students will passionately and clearly articulate the defense of their innovative style and portfolio work through public presentations. Students entering this class are expected to have completed all works included in their portfolio and have their innovation style fully developed for implementation into a reel.

GAA460 CREDITS: 3 PREREQUISITE(S): GAA430

Industry Professional Development

This course completes the innovative style and generalist/specialist portfolio process providing guidance and structure for the formal presentation of the students work. Students will passionately and clearly articulate the defense of their innovative style and portfolio work through public presentations. Students entering this class are expected to have completed all works included in their portfolio and have their innovation style fully developed for implementation into a reel.

GAA470 CREDITS: 3 PREREQUISITE(S): GAM381

Industry Professional Development

This course completes the innovative style and generalist/specialist portfolio process providing guidance and structure for the formal presentation of the students work. Students will passionately and clearly articulate the defense of their innovative style and portfolio work through public presentations. Students entering this class are expected to have completed all works included in their portfolio and have their innovation style fully developed for implementation into a reel.
GAME STUDIES (GAM)

GAM101 CREDITS: 3 PREREQUISITE(S): NONE
Introduction to Game Design
Whether the goal is to become a game designer, artist or programmer, this course is a path into the world of video game production. Students will explore what career paths lay ahead in the respective areas of game development through an understanding of the game design process and develop awareness of the many positions within the game industry. By learning fundamental design and visualization techniques needed to express complex game ideas, students will apply professional documentation techniques to their projects. Students will also learn how to convert their own game playing skills to tools used to analyze popular games and break down game play elements to discover what makes the greatest games tick. For Game Design students, this course will satisfy 3 credits towards the ART requirement in the Bachelor of Arts requirement.

GAM104 CREDITS: 3 PREREQUISITE(S): CSC102
Introduction to Game Programming
Recommended for students with little or no prior programming experience. Students will use a scripting language to study the basics of computer programming: variables, data types, looping, conditional logic, functions, arrays, types, and other basic concepts. The ability to explore these concepts prior to learning a more complex language such as C++ allows the student to learn game concepts without a language course and prepares the student for future courses in this program during the first year. Students will gain valuable programming experience by writing simple tutorial-based games.

GAM113 CREDITS: 3 PREREQUISITE(S): NONE
Introduction to Game Tools
Game development toolkits are the basis for industry games both casual and large. This course introduces students to working in a toolkit environment by instructing in how games of all sizes and complexities are built within a toolkit. The course also provides practice for students as they use the most foundational tools to build game projects.

GAM115 CREDITS: 3 PREREQUISITE(S): GAM101
Introduction to Serious Games
This course is an introduction to Serious Games and SIMS for applications such as general education, corporate training, military applications, healthcare and psychological therapies. Students actively explore the educational game prototyping process through the development of content-specific documentation and rich media. Leading serious games titles are showcased and examined. Topics emphasize the effectiveness of educational gaming, as well as the growing industry demand for SIMs, MM0s and other virtual environments to deliver quantifiable skills training. Students demonstrate an understanding of educational content-delivery methods and technologies.

GAM125 CREDITS: 3 PREREQUISITE(S): NONE
Introduction to Game Development
The process of developing games is an extensive process and requires developers to understand the many intricacies of development. This course aims to teach the full process of developing a game, from the pre-production stages to the final release and support of a game. The class will cover the basics of production, as well as the various positions and their duties on a game development team. Students will take part in mock game projects where they will attempt to fulfill all the needs of a mock game studio to learn the many parts of the development process.

GAM150 CREDITS: 3 PREREQUISITE(S): NONE
Evolution of Electronic Games
This is a critical review of the technology and design history of video games, from the first all analog machines to the powerful console systems of today. This course will discuss primary innovators and historical figures of the industry and the origins of game design elements such as scoring, risks and rewards, level design, interacting with AI and interface design. Through analysis and example, students will look at the development of the industry, the formation of the classical game genres, the explosion of game-related technology and the possible futures of the field. These design lessons will be applied to simple projects to reinforce how game design elements from three decades ago still shape our industry and its products.

GAM175 CREDITS: 3 PREREQUISITE(S): ENG101, GAM125
Game Testing and Analysis
The best game design and technology will fail if bugs, glitches, difficulty and gameplay balance issues mar the final product. As games grow more complex, the role of the game tester has been elevated from entry-levelpeon to a vital role in the development process, and entire third-party companies are being formed for the outsourcing of game testing. In this course students will learn to analyze, troubleshoot, report and document problems with game technology, controls, balance and ease of use. With an emphasis on clarity, brevity and depth of analysis, students will beta-test student projects and commercial public betas, and produce reports, analysis and suggestions for future improvements.
Critical Game Studies
This course is an introduction to advanced critical techniques and approaches to game design, analysis of games and game theory. Using techniques of critical theory, ludology and semiotics, students will explore the structure of games, interaction with the user and how games balance rules with freedom and risk with reward. The course will also delve into interface design, user control issues, data representation for the gamer and feedback loops. Present and future game genres will be examined and compared and contrasted among different platforms and styles of play.

Gameplay Programming Concepts
Gameplay Programming Concepts teaches students the most important theories and concepts in game programming. Students will be exposed to major game mechanic fundamentals that are expressed in multiple games across several genres. There is a strong focus on analysis and discovery learning. Those taking this class will be expected to observe existing mechanics and attempt to reproduce them both in documentation and in code. The course makes use of an existing game engine in order to focus on gameplay mechanics with the end goal of producing a playable game.

Game AI Concepts
Artificial Intelligence is at the core of the modern interactive experience in video games. This course is a survey of the many approaches to creating realistic, interesting behavior from a design point of view, while experimenting with concepts such as pathfinding, sensory systems, flocking, scripted events, heuristics and genetic algorithms. Students will use a variety of tools to create functioning projects that demonstrate class concepts and study various game AI systems and theories.

Game Engine Programming I
This course introduces the fundamentals of game engine programming by customizing and enhancing an existing framework. Students will learn the core concepts of engine programming. Symptoms of taking Game Engine Programming I may include: a greater understanding of frame rates, synchronization, timing, 2D and/or 3D graphics rendering, timed animation, user input, multiplayer, physics, collision detection and the most common algorithms used in game development. Many of these fundamentals will be implemented into a working engine from which playable games may be developed.

Game Scripting for Designers
Game scripting is a basic requirement for the development of games of all genres and sizes. From basic level scripting to AI, games have many layers of high level scripting in them. This course aims to teach how a designer will integrate their scripts into a game, and how they can have a direct impact on the game’s direction and play through their high level scripting. Through the class, the students will use multiple scripting languages to directly modify pre-existing games. Game projects will include standalone projects and mods to previous games.

Instructional Design
This course provides an exploration of interactive learning theory and the instructional design process. Students develop strategies to improve the learner’s comprehension by delivering information in an engaging medium. This course emphasizes the many roles of the designer in the instructional development and evaluation process. Topics include conducting a needs assessment; classifying learning objectives; enhancing the learner’s ability to master skills and procedures; sequencing content to facilitate comprehension; and developing methods to test behaviors, knowledge and perceptions.

Game Engine Programming I
This course introduces the fundamentals of game engine programming by customizing and enhancing an existing framework. Students will learn the core concepts of engine programming. Symptoms of taking Game Engine Programming I may include: a greater understanding of frame rates, synchronization, timing, 2D and/or 3D graphics rendering, timed animation, user input, multiplayer, physics, collision detection and the most common algorithms used in game development. Many of these fundamentals will be implemented into a working engine from which playable games may be developed.

Game AI Concepts
Applied Game AI Concepts
Quality implementations of artificial intelligence can make or break a game. This course will synthesize the theories and concepts of artificial intelligence with the skills of game programming. Students will program a wide variety of artificial agents utilizing a variety of traditional, modern and theoretical techniques. The student will apply algorithms for pathfinding, strategy, personality and other behaviors. Player interactions with these behaviors will be examined to provide challenging, balanced and enjoyable gameplay.
Level Design

This project-oriented class involves producing game levels for a variety of 2D and 3D engines with a focus on pacing, risks vs rewards, designing for difficulty level and storytelling. Students will create and concept several projects and learn basics of geometry, texturing, lighting and interactive scripting as well as playtesting and optimizing for various engines and environments.

Graphics Programming

Compared to graphics, no other gaming technology has evolved more quickly over the years. With the gaming industry driving hardware manufacturers, today’s graphics are preeminently better and literally millions of times faster than systems of only a few years ago. This course covers the basics of 3D graphics systems that cornerstone today’s games. Concepts such as cameras, lighting, motion, mesh processing, animation, shaders and particle systems are presented. 3D math theory as it relates to graphics processing and the rendering pipeline are also discussed.

Advanced Level Design

Having mastered the basics, students in this course will apply level design principles to the creation of entire game environments, interactive elements and objects, storytelling through level design, and texturing and lighting. The emphasis will be on using advanced game engines and their toolsets and may involve expert experimentation with new, innovative systems and content. This class will teach students how to rapidly develop experimental concepts and test their feasibility. Prototypes are key to a game company’s success, as a low-risk solution to experimenting with new, innovative systems and content. This class will teach students how to rapidly develop experimental concepts and test their feasibility. The class will focus on creating as many small prototypes as possible in the time frame, educating students on how to reduce time and increase turnover rate in their development process.

Scripting Integration

High-level scripting languages allow for rapid development, content creation and interactive events, and drives all of today’s professional game engines and tools. Used for both game logic and automation of tools, scripting has become a crucial element of game production. Some scripting languages are so well integrated with a given game engine that users create an entire game with script code. Students will learn one or more scripting languages during this course. Projects will include stand-alone script programs as well as game engine scripting projects.

Advanced Gameplay Programming

This course teaches students advanced theories and concepts in game programming, such as delegates, interfaces, namespaces, coroutines, threading, and event handling. The course will also focus on best practices and methods for optimizing code, not only at run time, but also focusing on optimizing for ease of development. This course makes use of an existing game engine in order to focus on gameplay programming techniques with the end goal of producing a playable game.

Game Tools Development

A game is only as good as its tool chain. The engine, art, asset management, editors, physics, AI and sound are all tools that create a game. Almost every aspect of game development requires several custom-designed tools. This course teaches fundamentals of tool development. Art tools such as game-specific plug-ins are almost always required. Most of these plugins use scripting systems and this course will give an overview of those most commonly used. Levels used in today’s games are often complex and the amount of data itself can be overwhelming, thus the need for efficient data asset management systems for monitoring the integrity of game data. Data asset management methods are covered in both C++ and scripting languages such as Python or Lua. Basic editor creation and image manipulation are also covered.

Writing for Interactive Games

Writing for the interactive environments of current and future video games poses complex challenges that are unique to the field. As the consumer base grows more sophisticated, gamers are demanding complex, believable worlds in which their decisions have an impact. This course explores best practices for creating interactive stories, quests, characters and worlds that flesh out the bare mechanics of game design. Students will create interactive projects and design scenarios with dialog, branching choices, backstory elements and intellectual challenges, as well as look towards the future of game storytelling.

Multiplatform Game Programming

This course will examine the technical aspects of multiplatform development. Developing for multiple platforms is a development challenge as well as an opportunity. Current generation games are often released on multiple platforms simultaneously creating a need for clean efficient code bases that can be moved from system to system. Code, engines and development strategies need to be developed to allow the constraints of each platform to be met. This course will expand on your gameplay programming emphasis and explore how these systems are implemented on different platforms, hardware and systems.

Game Design Workshop II

This course adds prototyping and building to the creative, peer-driven design practiced in GAM170. Students will workshop several designs and build playable versions of their game ideas in a rapid-development environment, with an emphasis on originality, playability and active revision to the design based on peer feedback.

Rapid Game Prototyping and Experimental Gameplay

Rapid prototyping is an essential process to developing new game concepts. Prototypes are key to a game company’s success, as a low-risk solution to experimenting with new, innovative systems and content. This class will teach students how to rapidly develop experimental concepts and test their feasibility. The class will focus on creating as many small prototypes as possible in the time frame, educating students on how to reduce time and increase turnover rate in their development process.
Serious Game Design
Games that teach, test, train and pose complex, realistic challenges to the player have been branded Serious Games. Using game technologies to teach is not a new concept, but the recent reinvigoration of this genre puts the spotlight on games that focus on giving the gamer new experiences and learning opportunities rather than an endless chain of aliens to slay. Using contemporary theories of electronic education, students will create and prototype games with a message to their mechanics. Students will study stealth serious games as well as institutional tools and tutorials, games based on scientific principles and simulation and the future of gameplay in education.

Production Studio II
The creation of completed games, no matter the size and complexity, is most often pipelined in a studio setting. Building upon the previous game studio course, students in this class will take mid level roles, leading lower term students and taking guidance from upper term ones as they apply game design, asset and programming techniques to complete game projects in a learning environment that reflects a production studio. This class simulates a game production studio and uses the principles of prototyping, design documents and pulling together assets, code, platform and testing to produce completed games.

Casual Game Design
Accessible, easy-to-play (but difficult-to-master) games are the bridge by which many customers enter the video game market, and an increasingly large pool of gamers make casual games their genre of choice. The casual game must be elementary in design but deep in execution; it must fit the genres and platforms of choice for casual gamers and give both the novice and the expert a memorable challenge. In this course we’ll design, prototype and build casual games that move beyond Tetris and Solitaire clones and advance the genre as a whole.

Applied Game Development
This course concentrates on techniques to produce a game from the standpoint of production. Students will tackle topics such as people management, team building, communication and workflow in order to grasp the complexities of running a development team. Game teams and projects continue to grow in size and complexity and it is essential to have an understanding of everything involved in game development.

Production Studio III
The completion of games, no matter the size and complexity, is most often pipelined in a studio setting. Building upon the previous game studio course, students in this class will take upper level roles, leading lower term students and taking guidance from project mentors as they apply game design, asset and programming techniques to complete game projects in a learning environment that reflects a production studio. This class simulates a game production studio and applies the principles of prototyping, design documents and pulling together assets, code, platform and testing to produce completed games.

Industry Professional Development
This course completes the innovative style and generalist/specialist portfolio process providing guidance and structure for the formal presentation of the students work. Students will passionately and clearly articulate the defense of their innovative style and portfolio work through public presentations. Students entering this class are expected to have completed all works included in their portfolio and have their innovation style fully developed for implementation into a reel.

American History
This course covers American history from the period of colonial settlement through the 20th century. The course is topical, covering key themes and areas of American history that led to major economic, cultural and technological changes.

The World Wars: 1914-1945
This course covers World Wars I and II from a tactical, political, strategic and technological perspective. In addition, the course analyzes not only how these wars shaped the 20th century but also the world we live in today.

20th Century Innovation
This course examines the role of technology in the 20th century and how it affects us culturally. Key themes include invention of new technologies and debates over the advantages and drawbacks of industrialization, mass production and information technologies. Students participate in a variety of innovative activities designed to understand the changes that took place socially and economically because of these innovations.

History of World Religions
This course covers the history of World Religions from the beginning of human society to the 21st Century. The course is topical, covering key themes and areas of religious history and what impact those themes and areas had on humanity. Students will gain an understanding and appreciation of the history of major world religions, which may include Hinduism, Jainism, Buddhism, Sikhism, Daoism, Confucianism, Shinto, Zoroastrianism, Judaism, Christianity, Manichaeism, Islam, and New Religious Movements.
The Vietnam Era
(GE, Social Sciences)
This course is designed to present a comprehensive overview of the period in which the United States was engaged in conflict in Vietnam. Some critical aspects include: how the United States became involved in Vietnam, the involvement of each US president and his war policies, the ground war, the air war and the anti-war movement and counterculture. Finally, the course analyzes the lasting effects of the Vietnam War.

Ancient Greek Warfare
(GE, Social Sciences)
This course covers the history and influences of Ancient Greece with an emphasis on warfare. The time period and the topics for this course are the Persian Wars through Alexander's campaigns.

HUMAN-COMPUTER INTERACTION (HCI)

Introduction to Human-Computer Interaction
This course will cover some of the core concepts in HCI relating to users and technology use. These include the notions of the interface, interactivity and interaction. Traditional ways of characterizing these aspects of the relationship between technology and users will also be examined in terms of various usability aspects.

Human Factors
This course will focus on human physical and cognitive capacities and how an understanding of them should inform the design of such everyday things as tools, information displays and computer software design. Among other topics, it will discuss the interaction of humans with computer systems, a domain generally known as Human-Computer Interaction. The goal is to help students learn and apply cognitive science theory and principles to increase the convenient use of man-made objects and systems, to reduce errors, and to increase productivity and improve safety by using such tools and systems.

Virtual Environments
This course is an introduction to virtual reality and virtual environments. Issues covered will include VR technology, software design, 3D human-computer interaction and applications of VR.

Sketching and Prototyping
Interactions between humans and computers can often be treated as a story. Before creation of interfaces and software, the story of how individuals interact is outlined using storyboards. This course provides students with the theories, techniques and practice of generating interface prototypes using storyboards.

User Experience Design and Testing
Often developers overlook the importance of the customer experience when using their products. As a result, it is becoming increasingly important for companies to provide customers with positive user experiences through fundamentals like navigation, search, usability and identifying the needs of the real user as well as that of the business. This course teaches students user experience design process from start to completion using appropriate design patterns, developing user personas, conducting usability evaluations within the cultural context and producing prototypes for further design research.

Designing Human-Computer Interfaces
This course tackles the challenges of developing interfaces with multiple technologies and design requirements. Through this course, the student will be exposed to the tools needed to create human-computer interfaces, analyzing the strengths and weaknesses of each of the technologies. Students in the course will apply the tools and techniques of interface design to solve current and future interface development challenges.

Gender and Technologies
Men and women are different. Gender factors influence how individuals approach and use technologies. Gender factors also influence the physical form that technologies take in order to be responsive to the physical differences between men and women. This course explores gender differences and teaches how they can be applied during the design and build process.

Human-Computer Interface Project
This course provides students the opportunity to implement their understanding of the latest research and ideas in this expanding field through a collaborative project. Working in teams, students will research, prototype, design and implement an HCI project through completion, addressing key factors such as input and output methods and devices, interface design, style and aesthetics, I/O mapping, efficiency and accuracy, ergonomics and perception.
Emerging Interface Technologies

As technology grows and changes, so does the need for humans to interact with it in new and natural ways. The future of interfaces is always in motion as technologists discover new and intuitive ways to work with technology. This course will explore and apply emerging interface technologies and examine how these technologies will impact the development of technology, software and products as well as how they impact the interactions with the users who use them.

Special Topics in HCI

Special topics classes in HCI will study selected topics in the area of Human-Computer Interaction providing opportunities for the study of material not covered in current course offerings. Special emphasis will be on emerging areas. Topics vary from semester-to-semester. Students will be encouraged to work within a multidisciplinary team in the class. Some of the topics of this class may be physical computing for creating interactive installation spaces and design prototypes that extend beyond the limitations of the computer mouse, keyboard and monitor screen; perceptive computing, which is a new field that combines visual cognition and computer visualization for massive data analysis such as NASA satellite data processing, behavior measurement from head-mounted video or surveillance video systems; or develop dynamic and engaging computer screen-based interactive projects. The topic selection will be contingent on the school’s resources.

HUMANITIES (HUM)

HUM305 CREDITS: 3 PREREQUISITE(S): NONE

Countercultures

(GE, Humanities)

Countercultures will examine major countercultural movements of the 20th century and explore their social, political, artistic roots and impact. Topics will include the Beat Generation, anti-war movements and drug subcultures of the 1960s-1970s, and Punk rock. Major artists and their works will be explored, as well as their impact on popular culture and the creation of subcultures. Students will read novels, lyrics, and poetry; watch films of the era; and listen to selected recordings of music from these periods in order to appreciate countercultural expressions.

HUM310 CREDITS: 3 PREREQUISITE(S): NONE

Contemporary Themes in Humanities

(GE, Humanities)

This course will introduce students to contemporary themes in the humanities. Topics will explore issues facing contemporary audiences as a result of the rise in new modes of expressions and the developments within the arts from innovators and creators.

HUM388 CREDITS: 3 PREREQUISITE(S): INSTRUCTOR APPROVAL

Special Topics in Humanities

(GE, Humanities)

Special topics courses are intended to provide focused studies within a specific discipline. Students in this course will engage in the advanced study of a specific aspect of the humanities, potentially engaging the basic principles of art, creative writing, literature, architecture and/or music. Students will consider subject matter within various contexts, which might include a social, historical, cultural and/or political context.

INTERNSHIPS (INT)

INT350 CREDITS: 3 PREREQUISITE(S): SPONSOR APPROVAL

Internship

An internship is considered a supervised, practical experience that is the application of previously learned theory. Employers/sponsors work with the student to meet specific objectives and/or learning goals and provide special mentoring or networking opportunities. In exchange, the intern helps the employer/sponsor in meeting overall work goals for the agency/company. Students completing 3.0 credit internships must work a total of 150 hours, or ten hours per week for 15 weeks.

INT400 CREDITS: 6 PREREQUISITE(S): SPONSOR APPROVAL

Internship

An internship is considered a supervised, practical experience that is the application of previously learned theory. Employers/sponsors work with the student to meet specific objectives and/or learning goals and provide special mentoring or networking opportunities. In exchange, the intern helps the employer/sponsor in meeting overall work goals for the agency/company. Students completing 6.0 credit internships must work a total of 300 hours, or 20 hours per week for 15 weeks.

JAPANESE STUDIES (JPN)

JPN105 CREDITS: 3 PREREQUISITE(S): NONE

Introduction to Japanese Culture

(GE, Humanities)

This course will survey Japanese character and society and will attempt to answer the question: What does it mean to be Japanese? Students will be introduced to various aspects of Japanese culture, including history, geography, religion, customs and traditions, society, politics, business, science and technology, communication, literature, arts and pop-culture. Through research, lectures, viewing of films and clips, presentations, and examining authentic materials, students will enrich their understanding of and appreciation for Japanese culture, and will be able to compare and contrast it with their own cultural experience and understand what it truly means to be Japanese.
Level I Japanese (GE, Humanities)
This course is designed for students studying Japanese for the first time. Students will be introduced to the whole of the Japanese language; they will acquire skills in reading, writing, speaking, and listening regarding such topics as greetings, classroom expressions, numbers, dates and time, daily activities, verb conjugation, simple introductions, ordering food, existence and location, hobbies, likes and dislikes, weather and shopping. Aspects of Japanese culture that tie in heavily with the language will also be introduced.

Level II Japanese (GE, Humanities)
In this course, students will examine the topics learned in JPN108 and study them at a more advanced level; they will continue to acquire skills in Japanese in reading, writing, speaking and listening. Emphasis will be on both conversational skills and grammatical analysis of the language. Aspects of Japanese culture that tie in heavily with the language will continue to be introduced.

Level III Japanese (GE, Humanities)
In this course, students will continue the development of communicative skills in Japanese in reading, writing, speaking, and listening through the intermediate level. They will learn to communicate at a deeper level about the topics previously learned in JPN108 and JPN208 as well as new topics such as family, shopping and food. Emphasis will continue to be on both conversational skills and grammatical analysis of the language. Aspects of Japanese culture that tie in heavily with the language will continue to be introduced.

Level IV Japanese (GE, Humanities)
In this course, students will accelerate and advance their communicative skills in Japanese in reading, writing, speaking and listening through the advanced level. They will learn to communicate at a deeper and more advanced level about the topics previously learned in JPN108, JPN208, and JPN308 as well as new topics such as travel, transportation and home. Emphasis will continue to be on both conversational skills and grammatical analysis of the language. Aspects of Japanese culture that tie in heavily with the language will continue to be introduced and examined at a deeper level.

LAW (LAW)

Legal Issues in Technology
This course addresses typical legal and business issues in the multimedia field. Rights granted under copyright, principles of fair use, trademarks, intellectual property law, trade secrets, unfair competition, disclosure and privacy laws are covered. Students explore these legal topics with focus on electronic media.
Managing Change and Innovation
This course provides insights into managing through periods of rapid change and high uncertainty. Fostering creative environments and environments that motivate and nurture knowledge workers will be discussed.

Leading Knowledge Workers
Technology organizations are unique in that they are predominantly comprised of individuals possessing deep technical skills required. Specialized leadership approaches are needed within technology organizations to fully capture the potential of knowledge workers and apply their capacity. This course introduces students to technology leadership topics such as: the role of personality profiles, leading geeks, situational leadership, human development, transformational and transactional leadership, team dynamics, inference management along with accountability and performance management. Successful conceptualization, design and implementing of technology requires planning.

Data Visualization and Mining
This course introduces theory and concepts relating to the effective display of data with a focus on quantitative data. Concepts provide the basis for selecting, designing and presenting graphs based on multidimensional data. Current tools are used to graph the correct data, alert decision makers to problems and display data geographically. Current tools are used to graph the correct data, alert decision makers to problems and display data geographically.

Trends in Business Technologies
This course is a survey of the emerging trends in business technologies. Students will look forward two-to-four years at the emerging products, legislation and needs that will impact them as managers and which need to be addressed to maintain the health of their organizations.

Business Intelligence and Data Management
Business intelligence focuses on the use of information to drive effective business actions. It is the vehicle to achieve maximum business value from both developing and mature data warehouses. This course provides a comprehensive overview of business, technical and cultural implications of business intelligence. It explores a wide range of contemporary issues, including data warehousing and data mining theory and practice, tools and techniques for delivering business intelligence, information and knowledge management, implementation and exploitation of emerging technologies, CRM, process reengineering, supply chain management and geographic information systems. The course particularly focuses on Data Mining, a computer-assisted process of evaluating enormous sets of data to find previously undiscovered patterns, draw conclusions and then make decisions based on these patterns.

ROI Based Decision Making and Negotiations
This course is centered on 12 negotiation exercises that simulate competitive business situations. Specific topics covered include distributive bargaining (split the pie), mutual gains framework, mixed motive bargaining (several issues at stake) with two and with more than two parties, auctions and fair division. Ethical dilemmas in negotiation are discussed at various times throughout the course. There are two principal objectives for this course. The first is to provide the student with negotiation tools that enable them to achieve their negotiation objectives in a fair and responsible fashion. The second is to learn by doing. That is, we provide a forum in which you actively apply these tools to a wide variety of business-oriented negotiation settings.

Big Data Analytics
This course is an application of Big Data concepts including algorithms, analytics, and visualization of Big Data such as dashboards and predictive models. Artificial life algorithms and data mining concepts are implemented. Some of the modeling will include linear and logistic regression. Statistical and machine learning will be studied and investigated in areas such as medical informatics and biology.

MARKETING (MKT)

Marketing
Analysis and understanding of how a product or service fits within the market landscape is a requisite for successful strategy. This course introduces the elements of market analysis, market position, identity, brand development, communication and customer perceptions. These concepts will be covered within the framework of technology products and services communicated using social media, traditional media and Internet landscapes.

Online Marketing Environments
Students explore a comprehensive approach to Internet marketing, opportunity, and measure, as well as correlate appropriate marketing strategies with marketing channels in this course. Online marketing environments delivers a strong foundation in brand presence and strengthening, website design principles, search engine marketing (SEM), social media networks, and mobile advertising. Students learn practical business strategies, promotion, performance evaluations, and improvement opportunities as they relate to marketing and advertising.

New Media Communication and Marketing
The New Media Communication and Marketing course instructs students how to promote and advertise their products and services across online media markets. Students research best practices for content creation and optimization that incorporates their brand, product and service into a vast network of applicable communication channels and audiences. Course content includes decision making on and evaluation/design of effective content, user demographics, social networks/news, blogs, video/photo sharing sites, viral marketing and brand presence strength.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Prerequisite(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MKT330</td>
<td>3</td>
<td>MKT250</td>
</tr>
</tbody>
</table>

SEO and Applied Online Marketing

Students gain an applied understanding of Internet marketing approaches, opportunity, and measure, as well as correlate appropriate marketing strategies with marketing channels. The SEO and Online Marketing Applied course thoroughly examines brand presence and marketing for social media, search engines, blogs, affiliate, email and mobile devices. Course participants receive an in-depth education in search engine optimization (SEO) and search engine marketing (SEM). Elevated topics include landing page design, meta-tags, anchor text, keyword development, image optimization, local search, conversion tracking, and link building, designed to increase relevant consumer traffic. This course also teaches performance evaluation and response through web analytics and site data reporting. Students distinguish the various metrics to identify areas of improvement, expand strengths and define campaign success.

MATHEMATICS (MAT)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Prerequisite(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT174</td>
<td>3</td>
<td>NONE</td>
</tr>
</tbody>
</table>

College Algebra

(GE, Mathematics)

Relations and functions types are developed thoroughly with their graphs. Function types include polynomial, rational, radical, exponential and logarithmic. Conic relations are developed thoroughly. Other topics include systems of equations and inequalities, matrices and sequences. Application relevance and appreciation are evolved through a discovery math lab component using technology.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Prerequisite(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT179</td>
<td>3</td>
<td>NONE</td>
</tr>
</tbody>
</table>

Pre-Calculus

(GE, Mathematics)

Introduction to Trigonometry with associated functions and graphs is the primary focus. Modeling is explored using trigonometric functions. Modeling and curve fitting are further explored using functions developed in College Algebra. Application relevance and appreciation are evolved through a discovery math lab component using technology.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Prerequisite(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT210</td>
<td>3</td>
<td>MAT174</td>
</tr>
</tbody>
</table>

Business Mathematics

(GE, Mathematics)

This course discusses the foundations of management science and business mathematics by learning basic principles of applying mathematical equations to problems in business. Decision trees and operations research, as well as general ways to approach increasing the efficiency of business processes, are developed in-depth. The course will also apply project scheduling such as Gantt charts and CPM/PERT networks to estimate confidence intervals for project completion. Finally, you will learn about the basics of linear programming, and how it is used to maximize profit and to be more efficient at using resources in a business.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Prerequisite(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT220</td>
<td>3</td>
<td>MAT174</td>
</tr>
</tbody>
</table>

Statistics

(GE, Mathematics)

This course presents the student with basic statistical concepts and methods. This course introduces descriptive and inferential statistics including elementary probability, linear regression and hypothesis testing. MATLAB will be used to emphasize theory and in applications problem solving.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Prerequisite(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT250</td>
<td>3</td>
<td>NONE</td>
</tr>
</tbody>
</table>

Calculus I

(GE, Mathematics)

This course is the study of single variable differential calculus. Emphasis is placed on differentiating elementary functions and solving application problems. MATLAB will be used to emphasize theory and in applications problem solving.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Prerequisite(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT251</td>
<td>3</td>
<td>MAT250</td>
</tr>
</tbody>
</table>

Linear Algebra

(GE, Mathematics)

This course serves as an introduction to linear algebra. It includes the study of systems of linear equations, matrix algebra, vector spaces, linear transformations, eigenvalues and eigenvectors. MATLAB will be used to emphasize theory and in applications problem solving.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Prerequisite(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT342</td>
<td>3</td>
<td>MAT250</td>
</tr>
</tbody>
</table>

Special Topics in Mathematics

(GE, Mathematics)

This course will explore special topics in the field of mathematics.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Prerequisite(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT388</td>
<td>3</td>
<td>Instructor Approval</td>
</tr>
</tbody>
</table>
MULTIMEDIA (MTM)

MTM125 CREDITS: 3 PREREQUISITE(S): NONE
Introduction to 3D Studio Max and Maya
As tools for game and digital artists, 3D Studio and Maya are widely used to create models, render them and ultimately animate them. This course provides students with a foundational overview of these industry 3D modeling and animation tool systems. Students will use this baseline knowledge as a launching place for later coursework that more deeply explores specific techniques and applications of 3D Studio Max and Maya.

MTM235 CREDITS: 3 PREREQUISITE(S): MTM215
2D Vector Animation
Students will learn techniques in animation using vector-based software such as editing symbols and instances, Flash vector drawing tools, staging, frames, motion and shape tweens, layers, foregrounds and backgrounds. Emphasis will be placed on the design, process and execution of Flash-based movies through the use of crisp graphics, animation and sound.

MTM215 CREDITS: 3 PREREQUISITE(S): NONE
Principles of Interactivity
As viewers increasingly take on roles of active participants in new technologies, the need has arisen for the assessment of the scope of interactive processes in the multitude of media such as computers, cinema, TV and web technologies, and virtual reality. The course traces the development of new media from their historical perspectives to their possible future developments within the framework of interactivity, and how participants’ roles are going to evolve as new technologies emerge. This course will explore the criteria of meaningful interactions and will give students a basis for developing immersive interactive experiences.

MTM213 CREDITS: 3 PREREQUISITE(S): MTM235
2D Digital Illustration
This course is an overview of the primary industry software tool (Adobe Illustrator) used in the creation of 2D computer graphics. Students will learn the commands and interfaces of industry-standard vector graphics software applications in order to create and manipulate 2D images.

MTM307 CREDITS: 3 PREREQUISITE(S): ART103
Advanced Photoshop
This course will take the student beyond the skills studied in the 2D Digital Graphics course. For those interested in pursuing a career in graphic or web design, it is necessary to gain experience using a graphical program such as Adobe Photoshop. Graphic design requires both artistic and technical skills in order to produce professional, technology-ready publications. By the end of the course, students will have extensive experience using Photoshop, including knowledge of the tools for photo retouching and enhancing photographs, painting tools and composite design using advanced knowledge of masks and channels. Students will also have created portfolio-level work.

MTM308 CREDITS: 3 PREREQUISITE(S): MTM235
Advanced Illustrator
In this course, students will learn to use Adobe Illustrator to work with several graphic formats. Students will create dynamic effects using patterns and brushes. They will also use advanced text manipulation techniques to effectively integrate text into illustrations. Students will learn to create complex illustrations with primitive shapes, use intricate blending methods, define patterns, draw 3D shapes and work with special text effects. This course shows experienced Illustrator users how to include special effects and other advanced features in graphics and illustrations for publication and for the Web.

MTM310 CREDITS: 3 PREREQUISITE(S): ART103 AND ART112
Aesthetic Principles of Interface Design
What is it that makes an engaging interface? What elements must be considered to hold user interest? This course explores the aesthetic and functional components associated with creating effective interfaces that encourage the user to be an active participant. Topics include product design, color and compositional ergonomics, and the design process as it relates to interaction with the content. Students will be involved in creating unique interface design solutions, as well as critiquing existing interfaces from a variety of media sources.

MTM330 CREDITS: 3 PREREQUISITE(S): ART112 AND (ART103 OR MTM235)
Production Studio I
How are media assets prepared and delivered in a production environment? What are the file formats used for different distributions, how does a production pipeline function and how is client specification and review navigated by those generating and delivering product? Students will be introduced to these issues and techniques through projects in a learning environment that reflects a production studio.

MTM371 CREDITS: 3 PREREQUISITE(S): MTM215
Multimedia in Context
A multimedia experience is one in which two or more distinct, complementary media combine to produce structural, functional or semantic properties not present in any individual component. This course will examine how these component parts of various multimedia systems are arranged, layered and composited to create interactive experiences. The course will encourage higher level discussion of new media phenomena such as digitization of books, hypertext, online games and role playing, virtual environments, among others, and how they combine to create multifaceted, immersive experiences.

MTM430 CREDITS: 3 PREREQUISITE(S): MTM330
Production Studio II
This course continues upon the Production Studio I. Students will work in a production studio environment and learn through simulation issues of translating client requirements into complete digital 2D, 3D, animated and web assets. Students will create works that are both stand alone and part of larger campaigns.
NETWORK SECURITY (NTS)

Security Essentials
The goal of this course is to provide network administrators with the knowledge to design and implement an effective security strategy in a competitive corporate networking environment. This course will explore security-by-design utilizing anti-virus tools, security policies and practices, password management, risk analysis and assessments, network vulnerabilities, enhancing security through cabling and network hardware, understanding different types of firewalls, packet filtering and NAT, setting up and securing a VPN, and understanding contemporary hacker exploits. The documentation created during this course can be added to the student’s portfolio.

Programming for Hackers
Security professionals are required to have programming skill sets unique to this industry. This course presents the scripting and compiler programming techniques relevant to securing and exploiting networks, hardware, applications and operating systems. Current hacker and defender techniques from the field inform what students will encounter within this course.

Security Applications
Keeping up with the state of the industry when it comes to applications and security appliances is extremely difficult. This course surveys the major network security related applications currently used to diagnose, trace and secure networks.

Social Engineering
Have you ever fallen victim to a phishing scam? Why are these scams so successful? Scams are based on specific attributes of individual decision-making processes known as cognitive biases or bugs in the human system. Social engineering is developing the art of persuasion to gather confidential information from individuals that would normally not disclose this data. A successful social engineer does not need to solely rely on hard technical skills to access information systems. This is a project-based course that will provide examination of historical processes known as cognitive biases or bugs in the human system. Technical feedback is provided on appropriate means for countering each step of this common methodology.

Exploit Development
In order to be adept at securing systems, defenders need to understand the techniques used to penetrate them. This course teaches students the techniques used to exploit systems and gives them opportunities to practice developing and deploying exploits within offline and controlled environments. As a part of their penetration testing training, students will learn the techniques used to secure systems from the exploits that they create and compare these to industry case studies.

Applied Exploits and Hacking
When discussing practical network security, we must acknowledge that all systems have vulnerabilities. This course combines the fundamental and historical perspective of hacking methodologies and applied hands-on skills. Hacking topics are explored in order to examine the current systems associated with these vulnerable points. This is an applied hands-on course requiring the use of a variety of modern operating systems. Typical walkthroughs explore the standard hacking methodologies such as discovery, footprinting, targeting, attacks, penetration, escalation of privileges and maintaining access. Technical feedback is provided on appropriate means for countering each step of this common methodology.

Network Security Monitoring
Explore the world of Network Security Monitoring (NSM) and packet analysis. Network security monitoring takes a step past standard intrusion detection models and collects the full spectrum of data types (event, session, full content and statistical) needed to identify and validate intrusions on contemporary network infrastructures. This course will examine typical network security monitoring hardware, tools, design and deployment. Standard vulnerability packet analysis scenarios will provide an in-depth appreciation of monitoring corporate-level networking environments.

Shell Scripting for Hackers
The goal of this course is to provide network security students with a solid foundation in creating shell scripts and basic programming concepts within UNIX/Linux, specifically to aid in security related tasks. This course explores the creation of scripts to manage large amounts of security-related data and automate normal active security operations. Students will write shell scripts to manage, correlate and analyze security logs; pass variables from one security application to another in order to continue a flow of security activities; and to automate and simplify security related tasks and processes. The scripts and programs created in this course can be added to the student’s portfolio.

Incident Response
Although network teams possess the tools needed to secure their infrastructures, they often lack the skills for managing the incident response process. This course provides students with the skills needed to create processes for appropriately responding to security incidents. Students will learn to evaluate at what point are computers shut down and the organization disconnected the Internet. Students will learn to analyze when is it best to let the intruders continue, so we can further determine their motivations, or goals? These processes are critical to ensuring that an incident doesn’t create greater organizational damage.
Network Defense and Countermeasures

The Network Defense and Countermeasures course is the art of fencing for network protection. This course covers designing a network defense, security policies, choosing and designing firewalls, configuring firewalls (demos and research), setting up VPNs, Intrusion Detection System overview and design, honeypots, and behavior-blocking software. Additionally, this course will provide solutions for identifying, assessing and preventing external and internal threats to your network in a multi-vendor environment.

Reverse Engineering

Programming for Hackers Reverse engineering of system viruses, exploits, intrusions or other means of disrupting systems and network operation is a highly relevant ability for information security professionals. Building from prior coursework in programming and exploit development, this course exposes students to researching and reverse engineering threats to computer and information systems and assets.

International and Federal INFOSEC Standards and Regulations

This course is an overview of the world of federal and international information security standards that guide the way organizations are doing business today. Research and analysis are conducted on how US security regulations vary from industry to industry, including healthcare, education, military, federal organizations, utilities and financial organizations. International security standards will also be reviewed in order to understand the impact of implementing appropriate information security mechanisms in a global organization. The documentation created during this course can be added to the student’s portfolio.

Collegiate Cyber Defense Competition

This course prepares students for a competition that specifically focuses on the operational aspect of managing and protecting an existing commercial network infrastructure. Not only do students get a chance to test their knowledge in an operational environment, they will also get a chance to network with industry professionals. The documentation created during this course can be added to the student’s portfolio. Due to the changing nature of the challenges, this course can be taken twice and credits received both times toward the appropriate degree.

Incident Response and Management

This course addresses how to react to adverse conditions in a networked world. The procedures for proactive and planning techniques that help ensure that appropriate reaction occurs during a system breach are conveyed. The course includes common detection techniques utilized in the business world, along with detailed information on risk management and best practices for reacting and responding to a system or network compromise. The documentation created during this course can be added to the student’s portfolio.

Security Evaluation and Assessment Methodology

The course is based on the National Security Agency’s (NSA) Information Security (INFOSEC) Evaluation Methodology (IEM), which is NSA’s recommended methodology for evaluating an organization’s technical security. The course will examine the process of coordinating with the customer, setting the scope of the project, obtaining legal authorization, conducting the ten baseline activities of the evaluation, and compiling a meaningful and understandable final product for the customer. Students registering for this course will be required to participate in an actual IEM based evaluation as a course project. The documentation created during this course can be added to the student’s portfolio.

Network Engineering Hardware

In contemporary IT architectures, understanding the physical world is just as important as understanding the logical world. This course will prepare students to understand all things physical in a contemporary IT architecture. Topics will include an overview, installation and troubleshooting of server hardware, routers, switches, wireless access points, laptops, memory upgrades, all types of cabling, CSU/DSU, fiber optics, patch panels, printers and electrical power types. This course will prepare students to perform the hardware tasks that are an integral part of the IT professional skill set.
Network Infrastructure Design I

During this course, students will learn how to design and build a network. Topics included in this course will prepare students to translate organizational needs into network designs. Students will learn how to consider the logic of both the physical network topology and the server infrastructure during a network infrastructure design process.

Virtualization System Technologies and Administration

This course will prepare students for working in the highly virtualized IT environments of contemporary businesses. The skills required to administer a typical Virtual Infrastructure will be covered in this class. The skills learned in this class will prepare you for understanding the design, implementation and tools used in a virtual environment. The course will focus on planning, implementing, configuring, deploying and securing server and network virtualization servers and desktop technologies for software-as-a-service (SaaS), cloud computing technologies, administering virtualized server infrastructure, resource and balancing management, virtual switching, routing and forwarding, logical storage partitions, virtual processors, network interfaces, virtual and remote management of virtualized operating systems in a vendor-neutral environment. Each student will complete a hands-on project to build a complete multi-server VMware environment using the tools explored in this class. Students will be taught the business drivers, pros and cons and use cases of virtualization technology.

Directory Services Design and Administration

Strategies presented in this course are used to identify the information technology needs of an organization and design and deploy a directory services structure that meets those needs. The focus of this course is the applied skills necessary to plan, design and implement the required directory services infrastructure for a worldwide enterprise. Topics covered include Directory Services forest and tree creation, populating directory services objects, construction of sites, DS backup and the restoration of a corrupted structure, securing the enterprise and maintaining proper procedures. Using a networking lab, teams will create a directory service infrastructure to meet business needs of a popular corporate entity.

Unix/Linux Systems Administration

Today’s enterprises implement a variety of server operating systems within their infrastructures. A successful information technology candidate must have the skills necessary to deploy current Unix/Linux distributions and alternative operating systems. Using a networking lab, teams will create a popular organizations enterprise level infrastructure. This course focuses on the application of Unix/Linux as a server. The applied topics will include account and resource management, installing Domain Naming Service (DNS), Dynamic Host Configuration (DHCP), file/printing services, securing the enterprise, Intranet/Internet tools, performing backup/restoration of critical files, performance monitoring and proper preventive maintenance procedures.
Network Infrastructure Design II

This advanced course provides students with additional opportunity to practice designing and implementing network infrastructures. Building upon concepts learned and practiced in NTW275, this course provides more complex scenarios requiring more advanced infrastructure design techniques and technologies. The concepts and labs of this course will be layered upon each other such that by course completion a best practice–based multi-site networking project will have been built. This course will prepare students to evaluate, design and implement network engineering best practices.

Managing Enterprise Networks

This course provides students with the opportunity to practice designing and implementing enterprise networking communication and content solutions. The course will cover designing and implementing unified communication, social media, and storage technologies at an enterprise level. This course will prepare students to evaluate, design and implement enterprise network engineering best practices.

The Business of Technology

This course takes a comprehensive look at how business requirements affect network technology design. Real-life case studies detailing how corporate and industry requirements drive technology design in order to supplement and enhance business processes. Topics will include assessing corporate IT culture, understanding organizational structure, and working with key stakeholders to design network solutions that meet business unit requirements. Upon completion of this course you will understand how business needs drive the technology innovation of an organization.

Small Business Network Design

This hands-on course will focus on designing and building a small business network from scratch. At the end of this course each student will have completed a full build of a typical small business network. This will include wired and wireless routing, server, clients, and BYOD configurations along with formulating service level agreements. Completion of this course will prepare you with the skills required of a systems engineer. Students will be given extensive hands-on exercises to reinforce the knowledge taught in class.

Business Continuity/Disaster Recovery

Business continuity planning and disaster recovery planning are vital activities and required knowledge for the Information Systems Engineer. For every IT system, location or process there should be a companion continuity and recovery plan. This course will explore this topic in detail, highlighting topics such as creating a plan and maintaining a plan. The COBRA methodology for Business Impact Analysis and Risk Analysis will be used. This project-based course will allow you to create a business continuity and disaster recovery plan using best practices learned in this course.

Modern Data Center and Cloud Computing Design and Services

Strong data center design skills are incredibly sought after in the IT marketplace. Receive an in-depth introduction to designing data centers and review industry best practices in this course. The focus is on the design of all aspects of a modern IT data center. This project-based course will guide you on a journey to build a medium-sized data center from the ground up. The course is broken up into three design sections: Physical, Network Infrastructure and Systems. The physical design aspects such as power, cooling, rack layout, cabling and physical security will be addressed in the Physical section. The Network Infrastructure section will cover the best practices used in data center network design such as high availability, top of rack switching, core/aggregation/access architecture, network virtualization and virtual switching, segmentation, VPLS, network security and other relevant topics. The final section, Systems, will explore topics such as compute, high-availability, storage, server virtualization, vMotion, server clustering, optimizing computing power utilization, backup, server architectures and multi-core processors, Unified fabric, I/O adapter types and other relevant topics. Multi-tenant and Cloud architectures for Data Center design will also be explored. The three major cloud segments, infrastructure as a service, platform as a service and software as a service will be covered. Upon completion of this course you will be familiar with how to evaluate, plan and design data center technologies.

PHILOSOPHY (PHI)

Selected Topics in Philosophy

This course is intended to familiarize students with major philosophers, schools of philosophy, and philosophical movements or periods. The topics will rotate at the discretion of the instructor. The course may cover either Eastern or Western philosophers.
PHYSICS (PHY)

PHY101 CREDITS: 3 PREREQUISITE(S): MAT174
Physics (GE, Science)
This course explores the theories and use of Newtonian physics, formulas and techniques associated with 2D kinematics, force, momentum, work, energy, heat and wave properties.

PHY125 CREDITS: 3 PREREQUISITE(S): MAT174
Introduction to Electricity and Magnetism (GE, Science)
This course will introduce the student to basic concepts of electricity and magnetism with discussion of practical applications. Charges and fields will be used to understand the concepts of potential, resistance, capacitance and inductance, and to solve basic DC circuits. Math through college algebra is required.

PHY350 CREDITS: 3 PREREQUISITE(S): PHY101 AND (CSC202 OR CSC203 OR CSC215)
Physics Game Programming
(GE, Science)
This course introduces the student to the concepts of physics as they are used, presented and manipulated in video games. Concepts of gravity, force, friction, momentum, Newton’s Laws, velocity, acceleration, vector force analysis and others will be presented and analyzed.

ROBOTICS (RBT)

RBT131 CREDITS: 3 PREREQUISITE(S): NONE
Digital Logic Basic Processor Design
Students will learn how a processor is built from fundamental logic gates. Learning how a processor works under the hood will help students become better programmers. Electronics fundamentals will be covered, including digital logic, Ohm’s Law, schematics and integrated circuits. The use of oscilloscopes and other electrical equipment will also be covered, including soldering and circuit construction techniques (programming with solder). Students will implement an assembly instruction set on a 4-bit microcontroller they design.

RBT173 CREDITS: 3 PREREQUISITE(S): CSC102 AND RBT131
Introduction to Microcontrollers
Various microcontroller architectures and integrated circuit families will be studied, along with their development environments. Interfacing to transducers, actuators, analog-to-digital converters and other supporting hardware will be covered, as well as elements of programming (software) and circuit implementation (hardware).

RBT205 CREDITS: 3 PREREQUISITE(S): NONE
Mechanisms and Materials
Students will explore the use of materials and design of simple mechanical systems through the use of CAD software and rapid prototyping technologies. Topics include design for manufacturing, power transfer, and choice of materials in designs.

RBT211 CREDITS: 3 PREREQUISITE(S): RBT173, CSC215
Arduino Embedded Programming
This course will cover programming structures and techniques for robotics system development. The course is focused on the advanced features of the Arduino family of embedded microcontrollers and will use both the Arduino Uno as well as the Arduino Leonardo which has the capability to serve as a USB host. Throughout the course, students will build a variety of advanced projects culminating in a multi-week final project that the student chooses based on instructor approval.

RBT231 CREDITS: 3 PREREQUISITE(S): RBT173
Autonomous Aerial Vehicles
Students will explore the computer control of both fixed-wing and rotorcraft aerial vehicles. Topics will include flight mechanics, electronic control of flight, control base stations, and important software techniques for controlling flying vehicles.

PSYCHOLOGY (PSY)

PSY310 CREDITS: 3 PREREQUISITE(S): NONE
Social Psychology (GE, Social Sciences)
Why do people behave a certain way? Can behaviors be predicted, controlled and changed? Have you ever been a victim of somebody who took advantage or tried to manipulate? What are persuasion and brainwashing? This course explores theory, research and application that make up the discipline. It examines both the traditional areas of the field, as well as more recent innovations. The course pays particular attention to the applications developed by social psychologists. The major goal of the course is to explicitly tie social psychology to lives of students.
RBT307 CREDITS: 3 PREREQUISITE(S): CSC102

Physical Computing Studio
Interesting connections between the physical world and the computer world are investigated. Active sculpture, electronics based art, simple aesthetic machines and interactive art installations are some of the topics that will be covered. This course assumes no prior electronics or programming experience; however, it will require instructor approval. Simple light/LED/relay control, small motors and servos, and simple sensors will also be covered. The Processing and Arduino programming environments will be studied, as it applies to projects. Class interest will drive topics covered. Students will complete a project of their design by the end of the course.

RBT337 CREDITS: 3 PREREQUISITE(S): CSC382, MAT220, MAT251

Digital Vision and Sensor Processing
Computer vision is an important means of robot control in many systems, such as pick and place machines, production line, construction robotics and terrain navigation. The data structures and algorithms used to process visual data are studied and show how they can overcome certain robotics problems. Edge finding, texture analysis and other feature detection/sensing methods are studied.

RBT347 CREDITS: 3 PREREQUISITE(S): RBT211

Robot Navigation
Student teams will design, implement and evaluate software for an autonomous mobile robotic platform. Real-world environment design considerations will be addressed throughout the design process. The level of autonomy must be clearly defined, taking into consideration asynchronous events and sensor input. Appropriate architecture selection will be a major component to the design, as dictated by performance requirements outlined in the project objectives. Topics that relate to the design will also be studied, including data structures used in the implementation of intelligent machines.

RBT353 CREDITS: 3 PREREQUISITE(S): RBT173

Robotics Competition
Student teams will design, implement and evaluate projects relating to an entry in a collegiate level, non-destructive robotics competition. Topics include mechanical, electrical, and computation design; autonomous system evaluation; real-time debugging and reliability testing.

RBT389 CREDITS: 3 PREREQUISITE(S): MAT342

Machine Learning
Machine learning is concerned with the development of adaptive and dynamic computational structures that enable machines to learn from experience. Topics will include unsupervised, supervised and reinforcement learning methods, as well as applications to robotics, human-computer interfaces and data mining.

RBT421 CREDITS: 3 PREREQUISITE(S): RBT379

Robotics Project
This course provides students with the opportunity to take an embedded systems project through a complete development life cycle. Students will work in teams to develop, produce and possibly market a completed hardware project of significant scope. This project may be a robot, embedded device or other complex hardware design. The course may be repeated for additional credit.

RBT479 CREDITS: 3 PREREQUISITE(S): RBT347

Mechatronics
Students will learn basic mechanical design, PCB layout and common mechanical control methods. Mechanical design topics include basic mechanical drafting, mechanical design, design analysis and rapid prototyping. PCB layout topics include schematic capture, design for electromagnetic interference, CRC design rules and surface-mount layout. Controls topics include an introduction to controls theory, PID control methodology and adaptive control systems.

SCI330 CREDITS: 3 PREREQUISITE(S): NONE

Green Technologies
Green Technologies offers a conceptual study of the current trends in energy production by means of accepted green technologies. This course will present a brief discussion about the history of fossil fuels and the impact of the current electric grid, as well as in-depth discussions about the development and uses of solar, wind, hydro, fuel cells, biomass and biofuels, geothermal, and emerging technologies. The course will provide students a connection to community and society by showing them ways to install these systems in the typical home, as well as how to understand policies or incentives dictated by the government.

SCI388 CREDITS: 3 PREREQUISITE(S): INSTRUCTOR APPROVAL

Special Topics in Science
Special Topics courses are intended to provide advanced or focused studies within a specific discipline. In the science discipline, topics can include, but are not limited to, advanced materials, quantum theory, calculus-based physics, game-based physics, advanced astronomy and advanced life systems.
SOCIAL SCIENCE (SS)

East Asian Cultures
(CE, Social Sciences)
This class will explore traditional East Asian culture and its influence throughout the region. Topics for exploration may include: how traditional Chinese culture aided in the formation of the ancient Japanese state; how Chinese culture influenced and shaped Japanese mythology; and how traces of traditional Chinese culture are still seen and felt in Japan today. The goal of the course is to aid students in becoming more globally minded by helping them understand and appreciate the values and cultural identity of East Asia.

Contemporary Global Issues
(CE, Social Sciences)
This course is a study of a variety of issues of international and global importance that are a part of the dialogue of contemporary geopolitics and social justice. The issues selected for examination reflect the most important events, trends, and problems facing citizens and leaders in an increasingly interdependent world.

Special Topics in Social Sciences
(CE, Social Sciences)
This course will explore special topics in the field of Social Sciences.

TECHNOLOGY (TCH)

Introduction to Design
True design stresses the importance of human beings in all aspects of thinking and practice. This course begins with exploration of design and the human dimension, discussing the nature of human beings and their physical, psychological, spiritual and/or cultural needs. Then, the role of human beings in the design process is considered, discovering how designers respond to human needs as well as issues of value. Lastly, the course discusses the scope of design in personal, social and cultural environments, observing how design has permeated human life through images, physical objects, services and environmental systems. Students in the course will review, write, reflect and develop an understanding of design and its place in the human condition.

Thinking Strategies
This course will offer students a cross-disciplinary, project-oriented approach to applied thinking strategies as they may relate to technologists. Students will learn the logical basis, history and potential for application of the following dimensions of thinking: critical, systems, creative, lateral and parallel thinking. Assignments and projects will guide students toward an understanding of how thinking dimensions relate to their intended disciplines in emerging technology industries, as well as to their personal educational aspirations.

Technology and Society
This course introduces students to the historical, contemporary, and possible future interdependencies of technology and society. These elements are discovered through readings, activities, discussions and forecasts related to the reciprocal relationship between technological and social development. This course provides students with tools necessary to understand the roles technologies play in society and to prepare students for interaction within emerging technology environments. Technology will be recognized as a driving force in social change, and societal needs as a driver of technological change. Students will consider the nature of technological change in contemporary society, as well as what these changes mean.

Product Development
This course provides the student with an understanding of the product development lifecycle for technologies from inception to innovation to production and through distribution to the contemporary market. Product case studies and insights into long tail product development will be discussed.

STUDENT INNOVATION PROJECT (SIP)

Student Innovation Project I
In this course, students will explore potential topics for their innovation project. The concept of innovation is explored as both a process and an output in relation to each student’s field of study (major). Students will engage in a series of workshop-based exercises to explore their fields and employ discovery learning techniques to find background information on their selected subject. Students will form their ideas into a plan to be used as the basis for developing their innovation and examine if their concept is novel or an improvement or addition to an existing concept. In the process of exploring and sharing their work, students will engage the various types of innovations and demonstrate the ability to communicate their ideas to others.

Student Innovation Project II and Portfolio Presentation
This course completes the Student Innovation Project and Portfolio process, and provides guidance and structure for the formal presentation of the students’ work. Students will passionately and clearly articulate their innovation and Portfolio work through public presentations. Students entering this class are expected to have completed all works included in their Portfolio and have a functional prototype of their Student Innovation Project completed. This is a Pass/No Credit Course.
Military Technology
This course provides an overview of the development of military technologies with a focus on the changing needs of the military from World War II to the present. Students will examine the affects of military funding, research and development of technology on the social economic strata of society.

Innovation Frameworks
This program introduces and provides students with a broad-based understanding of the fundamentals and frameworks of technology innovation, innovation process, system conflicts, levels of innovation and leading innovation methodologies like Lead User, Evolutionary, Sufield Triad and Enterprise Process.

Networked Society
This course will examine the myriad effects of networked systems/cultures on home and work life, politics, economics, and globalization. Topics explored include such issues as collective intelligence and digital democracy, the potential for network technology to isolate certain social groups such as the poor or the elderly; using networks for social activism and digital citizenship; the ways that social media have changed the landscape for individuals, subcultures, businesses and governments; and new forms of cultural, social and political organization in contemporary life.

The Design Process
This course will expose students to the analytical processes and skills that underpin the creative process of product design. These processes may include user research, use cases and usability, ergonomic analysis, materials selection, production processes, hand drawing and sketching, comparative product research, model making, prototyping and testing. Additionally, students will develop AutoCAD skills designed to allow for 3D design of products.

Ethics in Technology
This course is designed to introduce students to essential concepts necessary to evaluate the ethical implications and potential impacts of the use of new technology within human society and culture. Students will explore modern ethical dilemmas in technology, looking at multiple aspects of how the introduction of technology redefines law and values.

Technology, Society and Ethics
This course will introduce students to essential concepts necessary to evaluate the social and ethical impacts of the design, creation and use of new technologies. Students will explore dilemmas and scenarios that highlight how technology challenges social and moral principles in the 21st century. Students will also consider the nature and meaning of technological change.

Technology Product Design Project
This course provides students a studio course experience to work in small teams producing two product designs across the course of the semester. Students will utilize all skills from prior design courses to produce proposal-driven design documents and drawings for two technology products. One product design will be driven by supplied customer need and one will be at the discretion of the student team. In the second product, need case will be included in the submission.

Advanced Topics in Technology Product Design
This course explores a variety of technology product design topics and different subjects are included each time the course is offered over a calendar year. Topics explored in this advanced course may include materials and material innovation, visualization, environmental design, advanced human factors, and prototyping methods such as rapid prototyping and digital prototyping.

Politics, Power and Technology
This course will help students develop an understanding of the historical and contemporary interplay between technology, power and politics. Topics will include the uses and misuses of various technologies as tools of power by governments, states, social groups and individuals; the uses of technologies by totalitarian governments versus democratic governments; the politics of technology transfer; and socioeconomic issues associated with technology, such as digital and other divides. Students will also examine contemporary local, national and international technology policy issues.

Contemporary Issues in Technology
This course will explore contemporary issues within technology from a sociopolitical, economic and ethical perspective. Students will evaluate and discuss the relationship between technological innovation and social change from a value conflict and decision-making perspective.

Forecasting Emergent Technologies
This course explores methods used in industry practice to identify and capture emerging technologies. Learning activities include exploration of case studies and trending within the current market. There will be a project for this course in a technology area of interest to the student.

New Technologies: Innovation, Production and the Market
This course provides the student with an introduction to understanding the confluence of multiple influencing factors at play in emergent technology. Factors for consideration in innovation, product creation and marketing will be discussed. Discussion will cover technology development from inception to market.
TECHNOLOGY SPECIAL TOPICS (SPT)

SPT323 CREDITS: 3 PREREQUISITE(S): INSTRUCTOR APPROVAL

Special Topics in Technology
Students will engage in unique or current topics related to Technology. Activities may include reports, special projects, group work or research.

THEATER (THE)

THE230 CREDITS: 3 PREREQUISITE(S): ENG101

Character Development
(GE, Humanities)
Are there multiple personalities floating around in your head? Get them out on paper! This class develops the student’s ability to create a fictional personality for use in digital videos, animations and video games. Stereotypes, archetypes and allegory will be explored as a means for developing character attributes. Topics include the elements of character, how to develop background, analysis of existing characters and how to create a complete character profile.

THE238 CREDITS: 3 PREREQUISITE(S): NONE

Acting and Movement
(GE, Humanities)
This course introduces the student to the basic principles of acting and movement in a highly collaborative setting. Techniques for memorization, concentration and relaxation will be explored. Topics include terminology used by directors, exercises in character interpretation and improvisation. Movement topics may include rhythm, alignment, isolation and body language interpretation. Monologues and short scenes may be performed and critiqued.

THE230 CREDITS: 3 PREREQUISITE(S): NONE

History of Movies
(GE, Humanities)
Inventing the movies! This course examines the technological advances that make movies magic. From the silent era through the present students will explore the innovations that fueled film creation. World cinema and the Hollywood studio system will be studied through the viewing of classic and some not-so-classic films. This course explores mostly feature-length narrative films, placing them in their historical, cultural and technological context, therefore giving the student a foundation for interpretation and analysis.

THE320 CREDITS: 3 PREREQUISITE(S): ENG101

Introduction to Shakespeare
(GE, Humanities)
Was Elizabethan England really as different from our own culture as you think? Aside from talking funny (and those outrageous clothes), a study of Shakespeare’s plays and poetry demonstrates that certain themes are timeless. Love, hate, deception, laughter, and sorrow are in full bloom today just as 400 years ago. This course guides students past the linguistic challenges to explore Shakespeare’s themes and expressions that have made his works endure.

THE325 CREDITS: 3 PREREQUISITE(S): NONE

Movie Genre Studies
(GE, Humanities)
What goes into the making of your favorite style of film? Students will delve into the historical, economic, political and social factors that influence genre films. This course begins with an overview of what goes into the creation of a genre. It explores one or more specific genres in-depth, giving the student the tools to analyze and interpret how genres can define, constrain and expand the movie-making creative process.

THE330 CREDITS: 3 PREREQUISITE(S): NONE

Scriptwriting
(GE, Humanities)
Have a story you’re dying to tell? Now is your chance to tell it. This course is an introduction to writing for the screen (digital video, animation and/or game). Topics include plot development, format, classic paradigm structure, dialogue, voice, scope and context. An emphasis is placed on developing and defining each student’s individual style and personal themes. The goal of the course is for the students to submit their short script to upper division production courses for possible production.